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Executive Summary 
Models that relate ambient meteorology and pollutant observations can be used to simulate the 
temporal patterns of air emissions sources. The implementation of these models in software that 
uses simulated, rather than observed, meteorology data enables the estimation of temporal 
variations due to local weather for different locations and time periods. This approach has an 
advantage over the standard emissions temporal allocation process that uses static profiles 
because it supports the estimation of spatially and temporally dynamic temporal variability in 
emissions sources. The University of North Carolina at Chapel Hill’s Institute for the 
Environment (UNC-IE) developed software to estimate temporal profiles for residential wood 
combustion (RWC) and livestock ammonia emissions sources. UNC-IE conducted research to 
seek an empirical relationship between observed meteorology and wood smoke emissions and to 
implement this relationship as a step in the emissions processing sequence to calculate daily and 
hourly RWC emissions from annual, seasonal, or monthly emissions estimates in the National 
Emissions Inventory (NEI). Using a statistical model of the relationship between an ambient 
wood smoke chemical tracer and ambient temperatures at rural air quality monitors in the Pacific 
Northwest, UNC-IE developed an algorithm for computing daily temporal profiles for RWC 
emissions. UNC-IE also adapted an equation from the peer-reviewed literature to use county-
average meteorology to estimate hourly emissions from county-total monthly agricultural 
livestock ammonia inventories. These algorithms are implemented in a new Sparse Matrix 
Operator Kernel Emissions (SMOKE) processor called GenTPRO that reads hourly, simulated 
meteorology data to produce temporal profiles for use in preparing emissions inputs to air quality 
models.  
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1 Overview 
Models that relate ambient meteorology and pollutant observations can be used to simulate the 
temporal patterns of air emissions sources. The implementation of these models in software that 
uses simulated, rather than observed, meteorology data enables the estimation of temporal 
variations due to local weather for different locations and time periods. This approach has an 
advantage over the standard emissions temporal allocation approach that uses static profiles 
because it supports the application of spatially and temporally dynamic profiles. A barrier to 
implementing meteorology-based temporal profiles is the spatial incommensurability between 
model-ready meteorology data and emissions inventories. This document summarizes 
approaches developed by the University of North Carolina at Chapel Hill’s Institute for the 
Environment (UNC-IE) in collaboration with the U.S. EPA for coupling gridded, hourly meteor-
ology data to county-based emissions inventories that support the calculation of meteorology-
based temporal profiles. UNC-IE developed or implemented algorithms to estimate temporal 
profiles for two specific inventory sectors: residential wood combustion (RWC) and livestock 
ammonia (LNH3). In addition, we developed a process to estimate temporal profiles based on 
any user-defined meteorology variable, such as temperature or wind speed. Adelman et al. (2009; 
2010a; 2010b) presents the development and testing of the temporal profile models described 
here and is considered a supplemental reference for this research. 

 

 

2 Emissions Temporal Profile Algorithms 

2.1 RWC: Residential Wood Combustion Profile Algorithm 
Establishing a quantitative relationship between RWC activities and meteorology can provide a 
way to use the temporal variability in predicted meteorology data to estimate the temporal 
patterns in RWC emissions. If a quantitative relationship between a monitored chemical tracer of 
wood smoke emissions and an observed meteorology field, such as temperature, could be estab-
lished, this relationship could be used to estimate the daily or hourly variability in simulated 
RWC emissions using predicted hourly meteorology. UNC-IE conducted research to seek an 
empirical relationship between observed meteorology and wood smoke emissions and to 
implement this relationship as a step in the emissions processing sequence to calculate daily and 
hourly RWC emissions from annual, seasonal, or monthly emissions estimates in the National 
Emissions Inventory (NEI) (http://www.epa.gov/ttn/chief/net/2008inventory.html ). Figure 1 is a 
basic schematic of the hourly RWC emissions model we developed. 
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Figure 2. Conceptual model for estimating hourly RWC emissions from meteorology 

Figure 1 shows that we used observed meteorology and RWC tracer data to develop regression 
equations implemented in a SMOKE preprocessor.  Our model estimates a daily RWC inventory 
using RWC emissions in the NEI and hourly, predicted meteorology.  The daily RWC inventory 
is converted to hourly RWC emissions with SMOKE using hourly temporal profiles (Hourly 
TPRO). 

In this conceptual model, the two input data components to the statistical model (observed 
meteorology and observed RWC tracer data) are the complicating components of this approach; 
the rest of the input data (annual RWC emissions inventory and hourly predicted meteorology) 
are readily available. Although levoglucosan (LG) is a conservative chemical tracer for wood 
combustion that might provide a way to relate ambient pollutant concentrations to RWC 
emissions (Fraser and Lakshmanan, 2000), the specialized analysis techniques required for 
collecting LG from particle filters limit its availability to a small number of ambient monitoring 
campaigns. Further, some of the studies that do provide LG measurements were conducted to 
assess the air quality impacts of forest and agricultural fires and so are not appropriate for 
studying the impacts of RWC emissions. The limited number of LG measurements in the U.S. 
inhibits the development of a nationally extensible and statistically significant model relating a 
wood smoke tracer and meteorology.  

In an attempt to circumvent the problem of limited LG measurements, UNC-IE explored the use 
of alternative chemical tracers of wood smoke. Relevant tracers that are routinely monitored 
include organic carbon (OC) and elemental carbon (EC). Unlike LG, however, these pollutants 
are not unique to wood combustion and often include signals from other combustion sources, 
such as the combustion of transportation fuels. Because these alternative compounds are not 
unique to wood smoke emissions, we tried to target analysis of these data to the times of the year 
and the PM monitoring locations that have strong RWC signals.  

Quantifying the relationship between potential wood smoke chemical tracers and meteorology is 
also complicated by the complexity of the atmospheric processes that influence ambient pollutant 
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concentrations. While temperature plays a role in the magnitude of RWC activity, with lower 
temperatures corresponding to higher activities, other factors, such as the extent of atmospheric 
mixing, significantly influence ambient pollutant concentrations. To use ambient measurements 
of RWC chemical tracers as proxies for emissions activity, it is necessary to consider the various 
meteorology parameters affecting both the emissions activities and ambient concentrations of 
RWC pollutants. While ambient temperature measurements are commonly co-located with the 
PM chemical measurements, indicators of atmospheric mixing or stability are typically not 
measured and must be derived from simulated meteorology. Factors in the calculation of 
atmospheric stability may include vertical temperature gradients, planetary boundary layer (PBL) 
heights, cloud cover, wind speeds, and the Monin-Obukhov length. Atmospheric stability 
parameterizations have been developed to consider combinations of these factors, and include 
the ventilation index (Hardy et al., 2001) and the atmospheric dispersion index (Lavdas, 1986). 
Both of these indices are defined in terms of numeric ranges that correspond to different classes 
of atmospheric stability. Table 1 defines the categories for both the ventilation index (VI) and the 
atmospheric dispersion index (ADI). 

Table 1. Classification schemes for two stability indices, VI and ADI 

Mixing Classification VI (m2/sec) ADI (m2/sec) 

Extensive mixing Very Good – >100 

 Good >7,050 61-100 

 Generally Good – 41-60 

Stagnation with low 
wind speeds Fair 4,700-7,050 21-40 

 Generally Poor 2,350-4,700 13-20 

 Poor – 7-12 

None Very Poor < 2,350 1-6 
 

UNC-IE used multiple data sources to research the relationship between chemical tracers of 
wood smoke and meteorology. The Puget Sound Clean Air Agency (PSCAA) distributes daily 
PM2.5 and LG observations from 2005 to present for sites around Seattle, WA (http://trend 
graphing.pscleanair.org/). Field campaign data collected for particulate matter (PM) source 
apportionment studies that included LG were available for sites in the southeastern U.S. for 2007 
and the Great Lakes region for 2004 (Marc Houyoux, EPA, personal communication, 2009). We 
downloaded OC and EC data from the Speciation Trends Network (STN) 
(http://www.epa.gov/ttnamti1/slams.html)  for multiple years for sites throughout the country. 
Many of the chemical observation sites also included ambient temperature measurements that 
could be used in these analyses. We used simulated temperatures, wind speeds, PBL heights, and 
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derived ventilation indices from meteorology data provided by EPA. They provided meteorology 
modeling results at 12-km resolution for 2005 and 2006 for the western U.S., 12-km resolution 
for 2006 for the eastern U.S., and 36-km resolution for the continental U.S. (Patrick Dolwick, 
EPA, personal communication, 2009). 

Investigation of the PSCAA LG data showed a fairly strong relationship with ambient tempera-
tures at suburban and rural sites in the area (Onstad and Simpson, 2008). A series of five 
monitors with LG observations covers a range of locations from rural to urban around Puget 
Sound. Figure 2 shows regression curves relating ambient LG and temperatures at the PSCAA 
sites for the years 2006 and 2007. We compared daily average LG and temperatures at the five 
PSCAA sites and fitted the data with regression lines and calculated R2 values for each site. 

The regressions in Figure 2 demonstrate that without any corrections for atmospheric stability, 
there appears to be an exponential relationship between ambient LG and temperature. The 
strongest relationship occurs at the rural Darrington site, with weaker relationships at the 
suburban Marysville and Tacoma sites. The urban sites, Duwamish and Beacon Hill, show an 
insignificant relationship between LG and temperature. The rural and suburban sites have high 
wintertime concentrations of LG due to a high prevalence of wood-burning devices used in 
residences for wintertime heating. Roadways and industry heavily impact the urban sites, with 
little influence from woodstove use (Onstad and Simpson, 2008). The higher LG concentrations 
in the rural and suburban monitors, relative to the urban sites, are also seen in the plots in Figure 
2. These plots indicate that rural monitors in areas that have a high level of woodstove use could 
be used to establish an empirical relationship between RWC activity and meteorology.  

Investigation of the LG data collected at southeastern U.S. sites showed less compelling relation-
ships with temperature than at the Puget Sound sites. Figure 3 shows the locations of five sites in 
the Southeast that reported LG observations, and regression plots of daily average LG and daily 
minimum temperatures. 

Given the limited number of sites in the U.S. that collect LG observations, we decided to explore 
other chemical tracers of wood smoke emissions. In the STN database there are OC and EC 
measurements for several years and dozens of sites. Although OC and EC are not unique tracers 
for wood smoke and RWC, we filtered the STN data to identify sites that are affected by RWC 
emissions. To isolate periods when RWC activity is high, we applied a maximum-temperature 
restriction of 10°C, excluding all observations collected at temperatures above this threshold. We 
assumed that this temperature threshold would also be a proxy for excluding the wildfire season, 
which occurs during warmer months of the year. To identify what we call “RWC monitors”—
those monitors most likely affected by RWC sources—we used the ratio of OC to EC. By 
assuming that higher OC/EC ratios may indicate a wood smoke signal (Ward et al., 2011), we 
identified potential RWC sites as the 80th percentile of the median OC/EC ratios across all STN 
monitors. We applied an additional filter by including only those monitors with negative 
correlation between temperature and measured OC. Table 2 shows the results from this analysis 
for the year 2006.  
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Figure 3. Regressions for the five PSCAA monitoring sites 
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Figure 4. Regressions for five southeastern U.S. monitoring sites 
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Table 2. STN RWC monitors for the year 2006; mean and median measured organic 
carbon (µg/m3) 

 
NOTE: “Corr” (final column) is the value of the correlation between temperature and measured OC. 

For the initial attempt at developing a statistical model for RWC emissions, we focused on data 
from the year 2006 because of readily available meteorology and ambient monitoring data for 
that year. Some of the STN monitors that we identified through these analyses are known 
locations of high RWC activity and air quality impacts (e.g., Missoula, MT). Using these sites, 
we experimented with different meteorology predictors (temperature, wind speed, PBL height, 
ventilation index), time averaging (day, week, month, year), and spatial aggregation (site ID, 
state, region, quadrant) in an attempt to find statistically significant relationships with the 
observed OC concentrations. We used both monitored and predicted temperatures, which are 
highly correlated with each other, and simulated wind speeds and PBL heights as proxies for 
atmospheric mixing. Covariance in the meteorology variables inhibited their use as interaction 
terms in a model and required us to explore models that treated the variables separately.  

Figures 4 through 6 illustrate comparisons between OC observations at the 16 STN RWC 
monitors listed in Table 3 and various simulated meteorology variables: daily average 
temperature in Figure 4, daily average PBL height in Figure 5, and daily average wind speed in 
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Figure 6. The purpose of these comparisons was to explore associations between a wood smoke 
proxy and various atmospheric conditions.  

 
Figure 5. Scatterplots comparing measured OC (µg/m3) and  

simulated daily average temperatures (°C) at STN RWC sites in 2006 
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Figure 6. Scatterplots comparing measured OC (µg/m3) and  

simulated daily average PBL heights (m) at STN RWC sites in 2006 
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Figure 7. Scatterplots comparing measured OC (µg/m3) and  

simulated daily average wind speeds (m/s) at STN RWC sites in 2006 
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Of all the possible predictors for OC in the STN data for 2006, we found that the site location 
was the best predictor of variance in the data. We explored aggregation of the data from single 
sites to general locations/regions (e.g., northeastern U.S. sites, southwestern U.S. sites) and from 
days to week/season/month in attempts to develop extensible relationships between OC and 
meteorology. We also tried filtering the data by different temperature ranges, PBL heights, and 
wind speeds to explore whether relationships existed in different categories of meteorology 
conditions. Table 3 presents results from various models we developed from the STN OC data. 
These results confirm that of all the variables we tested, the site location was the best predictor of 
variance in the observed OC. As site location is not a useful model parameter for the simulation 
of temporal variability in RWC emissions, we decided against further analysis of the STN data 
and opted instead to revisit the PSCAA monitoring data.  

Table 3. STN model development experiments 

Model Variables Controlled in the Model R2 

#1 Date, temperature, PBL height, wind speed, and all possible interactions 
among these variables 

0.15 

#2 Same as #1 + month-specific variable 0.16 

#3 Same as #1 + site-specific variable 0.35 

#4 Same as #1 + location-specific variable 0.20 

#5 Same as #1 + all possible interactions of site variable with other predictors 0.51 
 

To expand the number of data points available for developing a statistical model relating 
meteorology and wood smoke, we compared LG observations at the PSCAA sites to other, more 
routinely measured PM data. Nephelometer PM2.5 has been measured by the PSCAA from 2004 
to the present and shows a strong correlation in both space and time with measured LG at several 
monitors. Figure 7 shows comparisons between LG and nephelometer PM2.5 at two sites in the 
PSCAA monitoring network. Due to the strength of these correlations, we decided that nephelo-
meter PM2.5 could be used to increase the sample size of observations for developing an RWC 
emissions model. 
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Figure 8. PSCAA site comparisons between daily levoglucosan (LG) and  
PM2.5 nephelometer measurements 

Figure 8 compares time series of daily temperatures and nephelometer PM2.5 at the PSCAA 
monitoring sites from 2004 to 2010. Qualitatively this plot indicates a negative correlation 
between the two variables. To explore this apparent correlation further, we developed regressions 
between PM2.5 and temperature at the PSCAA sites. Figures 9 and 10 summarize these 
regression results. Figure 9 shows the relationship between PM2.5 and temperature for all data 
points collected from 2004 to 2010. Although the R2 values for these relationships are low (not 
shown), there is a distinct elbow in the fitted regression line, indicating that there is a tempera-
ture below which the correlation between the two variables switches from being positive to 
negative. To explore this trend further, we filtered the PSCAA data to exclude temperatures 
greater than 50°F (>10°C) and outliers (90th percentile of PM2.5 measurements). Figure 10 shows 
the filtered scatterplots and regression lines, and indicates that despite these refinements, the 
correlation between these variables is still fairly weak. 

 
Figure 9. Daily temperature and PM2.5 time series at the PSCAA monitors 2004-2010. 



EMAQ LOE (EPA Contract EP-D-07-102)  WA 5-05: Meteorology-Based Emissions Temporal Profiles 

UNC-EMAQ(5-05)-015.v1  September 27, 2012 13 

 
Figure 10. PM2.5 nephelometer (µg/m3) vs. temperature (°F);  

no restrictions on any variables 

 
Figure 11. PM2.5 nephelometer (µg/m3) vs. temperature (°F);  

removed observations above 10°C and upper 10% of PM2.5 measurements 
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UNC-IE tested the hypothesis that observed PM2.5 at monitors with strong RWC signals would 
be inversely correlated to ambient temperatures. Despite promising qualitative relationships, 
statistical analysis of the chemical and meteorology data failed to produce a statistically signifi-
cant model. We finally developed a basic regression equation from the three sites in the PSCAA 
network that were most strongly associated with RWC sources. Details of the regression 
equations used to relate ambient PM to temperatures are included below: 

• PSCAA monitoring sites: Darrington, Marysville, Tacoma South 

• Years: Observed temperature and nephelometer PM2.5 from 2004 to mid-2010 

• Predictors: (1) daily minimum temperature, (2) weekly averaged temperature, and 
(3) monthly averaged temperature; note that all predictors included a restriction for 
temperatures ≤50°F (i.e., all measurements associated with temperatures >50°F were 
excluded) 

Table 4 summarizes the three regression equations we developed. The intent of these equations is 
not to predict ambient PM2.5 concentrations but to simulate the temporal variability in ambient 
concentrations, which would then be used as a proxy for RWC emissions’ temporal emission 
patterns.  

Table 4. RWC emissions regression equations 

Model Averaging Equation Number of 
Observations R2 

#1 Daily PM2.5 = 42.12 – 0.79T 2,008 0.258 

#2 Weekly PM2.5 = 38.03 – 0.68T 305 0.260 

#3 Monthly PM2.5 = 36.52 – 0.64T 71 0.354 
 

We adapted these equations to estimate temporal variability from RWC emissions sources. 
Equation 1a uses estimates of daily PM2.5 emissions to build annual-to-daily emission profiles 
for application to RWC sources. The algorithm uses county-average daily minimum tempera-
tures to estimate the percentage of RWC emissions allocated to each day of the year, including a 
maximum temperature cutoff to prevent RWC emissions from being allocated to days too warm 
to have much (if any) RWC emissions. The outputs from this algorithm are temporal profiles that 
convert annual RWC inventories to daily emissions for every county in the modeling domain. 

 

€ 

PEi,d =
(42.12 − 0.79*Ti,d )

(42.12 − 0.79*Ti,d )
d=1

365

∑
  (Equation 1a) 
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where 
 

PEi,d = Percentage of annual emissions in county i on day d. 
Ti,d = Daily minimum ambient temperature (°F) in county i on day d (maximum 
temperature of 50°F) 

 
Equation 1a could be adapted to estimate weekly or monthly emissions from an annual inventory 
by replacing linear regression model #1 from Table 4 with model #2 or #3, respectively. After 
converting an annual inventory to daily emissions using Equation 1a, a uniform diurnal profile 
can be applied to estimate hourly emissions for input to an air quality model.  

Figure 11 shows hypothetical RWC emissions calculated with standard U.S. and Canadian 
profiles compared to the meteorology-based algorithms we developed. These plots show emis-
sions for a 1,000 ton/yr inventory. Year 2006 meteorology was used to compute emissions for 
the five counties shown in Figure 11. The weekly and daily plots show several points where the 
emissions drop to zero. These occur because the algorithm calculates RWC emissions only for 
periods when the minimum temperature in the county is ≤ 50°F. For weeks or days when the 
minimum temperature never goes below 50°F, the RWC emissions are calculated as zero.  

To provide flexibility in the way that the RWC emissions algorithm is activated, we imple-
mented a temperature threshold override. A temperature threshold (Tt) variable sets a maximum 
temperature cutoff by either state or county. By default the algorithm activates RWC emissions 
at temperatures below 50°F. If the user sets the temperature threshold variable, RWC emissions 
will instead be activated below Tt. A lookup table of state/county FIPs codes and temperatures 
(°F) can be input to the algorithm if the user needs to set different temperature thresholds across 
a modeling domain. The temperature threshold override is used to control when RWC emissions 
are activated in regions where the 50°F cutoff may not be appropriate. For example, counties in 
southern Florida may experience only one or two days in an entire year when the minimum 
temperature dips below 50°F. Without using the threshold override, all of the RWC emissions 
for these counties would be allocated to those one or two days, producing large emissions spikes 
that might not be realistic. By increasing the temperature threshold, these spikes can be avoided 
by activating the RWC algorithm on other days. 
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Monthly 

 

Weekly 

 

Daily 

 
Figure 12. Sample RWC emissions computed with regression models #1, #2, and #3 from 

Table 4; comparison of standard profiles with modeled profiles 
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A more detailed implementation of Equation 1a, including the conditions for the temperature 
threshold, is included below in Equation 1b. 

If Ti,d ≤ 50       

€ 

PEi,d =
(42.12 − 0.79*Ti,d )

(42.12 − 0.79*Ti,d )
d=1

365

∑
     

 
If Ti,d > Tt (Equation 1b) 
  PEi,d = 0  
 
If 50 < Ti,d ≤ Tt 

∑
=

−

−
= 365

1

,

)50*79.012.42(

)50*79.012.42(

d

diPE  

 
where 
 

Ti,d = Daily minimum ambient temperature (°F) in county i on day d (maximum 
temperature of 50°F) 
PEi,d = Percentage of annual emissions in county i on day d. 
Tt = Temperature threshold (default = 50°F) 
 
Note: Ti,d can be replaced by Ti,m = monthly minimum ambient temperature in county i 
during month m. 

 
UNC-IE and EPA developed a second RWC temporal algorithm as an ad hoc approximation of 
the original equation to broaden its application by removing the intercept term. With this term 
removed, Equation 1b will not produce negative emissions when the temperature threshold is 
increased above 53.3°F. Equation 2 shows the ad hoc, alternative RWC equation. 

 
If Ti,d > Tt       

PEi,d = 0  
 (Equation 2) 
If Ti,d ≤ Tt  

PEi,d =
0.79*(Ti,t −Ti,d )

0.79*(Ti,t −Ti,d )
d=1

365

∑
 

 
where 
 

Ti,d = Daily minimum ambient temperature (°F) in county i on day d (maximum 
temperature of 50°F) 
Tt = Temperature threshold for the state or county (default = 50°F) 
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PEi,d = Percentage of annual emissions in county i on day d. 
Ti,t = Temperature threshold (°F) in county i  
 
Note: Ti,d can be replaced by Ti,m = monthly minimum ambient temperature in county i 
during month m. 

 
The alternative RWC algorithm can be selected using the environment variable 
RWC_ALT_EQ_YN.  
 
 RWC_ALT_EQ_YN = N → Use Equation 1 to calculate RWC temporal profiles 
 RWC_ALT_EQ_YN = Y → Use Equation 2 to calculate RWC temporal profiles 

Recommended spatial surrogates for computing the county-average meteorology for the RWC 
profile algorithm include home heating-wood, housing, and population. 

2.2 LNH3: Agricultural Livestock Ammonia Profile Algorithm 
Russell and Cass (1986) developed a theoretical equation based on investigations of ammonia 
(NH3) emissions from animal waste decomposition conducted by Muck and Steenhuis (1982) to 
predict diurnal NH3 emission variations as a function of daily meteorology. UNC-IE, with 
support from ENVIRON International Corporation (Mansell et al., 2009), adapted the Russell 
and Cass equation to create Equation 3, which uses county-average meteorology to estimate 
hourly emissions from county monthly agricultural livestock NH3 inventories.  
 

Ei,h = [(2.36
Ti,h−273
10 )•Vi,h ]   (Equation 3) 

 
where  
 

Ei,h = Emissions rate in county i at hour h. 
Ti,h = Ambient temperature (Kelvin) in county i at hour h. 
Vi,h = Wind speed (m/s) in county i at hour h (minimum wind speed of 0.1 m/s) 

 
UNC-IE applied Equation 3 to estimate hourly temporal allocation factors by using the derived 
Ei,h values in Equation 4:  
 

 

 (Equation 4) 

where  
 

PEi,d = Percentage of daily total emissions rate in county i at hour h. 
Ai = Monthly emissions in county i. 

 
Equation 4 outputs temporal profiles that are used to convert monthly livestock inventories to 
hourly emissions for every county in the modeling domain. For an emission modeling applica-

PEi,h =
Ei,h

Ei,h
h=1

24

∑
•A
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tion, annual livestock inventories are converted to monthly inventories using county-specific 
monthly temporal profiles. 
 
Recommended spatial surrogates for computing the county-average meteorology for the live-
stock ammonia profile algorithm include agricultural land area, rural land area, and total land 
area. 

2.3 MET: Generic Meteorology Profile Algorithm 
UNC-IE also implemented an algorithm to compute annual-to-hourly temporal profiles based on 
hourly time series of a selected meteorology variable (Equation 5):  
 

€ 

PEi,h =
mi,h

mi,h
h=1

8760

∑
  (Equation 5) 

where 
 

PEi,d = Percentage of annual emissions in county i at hour h. 
mi,h = Meteorology variable in county i at hour h 

 
This is a simple algorithm that computes the percentage of emissions to allocate to each hour 
based on the hourly fractional contribution of a selected meteorology variable relative to the 
annual sum of all hourly values for that variable. While the fractional contribution of county-
average wind speed for each hour of the year is somewhat meaningless, it does provide a way to 
build a time series that can be applied to an annual emission inventory to estimate hourly values. 

 

 

3 Temporal Profile Generator: GenTPRO 
For use as a processor in the Sparse Matrix Operator Kernel Emissions (SMOKE) system, 
UNC-IE developed a temporal profile generator that implements the meteorology-based tem-
poral profile algorithms described in Section 2. This processor, called GenTPRO, reads in hourly 
meteorology data from the Meteorology-Chemistry Interface Processor (MCIP) and a gridded 
spatial surrogate (commonly used in SMOKE) to produce temporal profiles and cross-reference 
data in a comma-delimited (CSV) format and a temporal data binary netCDF file. Annual MCIP 
data are required to calculate temporal profiles with GenTPRO. The spatial surrogate defines the 
grid cells that will be used to compute county averages of the required meteorology variables. 
Equation 6 and the corresponding Figure 12 illustrate the calculation that GenTPRO uses to 
compute county-average meteorology. The figure shows an example of 16 grid cells that overlay 
a polygon (the shape outlined with the blue line) representing a county. The two solid blue 
shapes in the county represent a particular land cover or land use category in the county, such as 
agricultural land. The pink shaded areas are the cells with which the land cover intersects and 
would contain nonzero values in the gridded spatial surrogate data. If agricultural land were 
selected as the surrogate to use to compute county-average temperatures, GenTPRO would use 
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the temperature values in the pink shaded cells in Figure 12 to compute the county average and 
would ignore the blank cells. The averages are arithmetic means based on a simple intersection 
between the surrogate and the meteorology data grid, with no weighting. Equation 6 is an 
example of how the county average temperatures would be computed for the situation 
represented in Figure 12. 
 

Tavg,i =
T2 +T3 +T4 +T10 +T11 +T12 +T14 +T15 +T16

n
 (Equation 6) 

where 
 

Tavg,i = average temperature in county i 
Tx = temperature in grid cell x (e.g., T2 = temperature in grid cell 2) 
n = number of grid cells that intersect the selected surrogate (n = 9 in this example) 

 
Figure 13. Schematic of county-average temperature approach 

GenTPRO provides an option to specify a “profile method,” which can be set to generate 
temporal data for residential wood combustion (RWC) sources, agricultural livestock ammonia 
sources (LNH3), or generic meteorology-based (MET) profiles. Additional operational details of 
GenTPRO, including input and output files and environment variables, are available in the 
SMOKE v3.0 User’s Manual (http://www.smoke-model.org).  
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