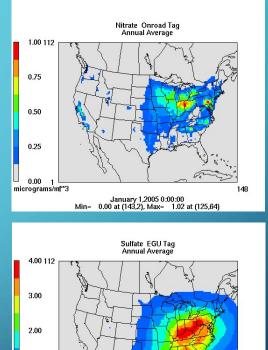
INTEGRATED SOURCE APPORTIONMENT METHOD (ISAM) DECOUPLED DIRECT METHOD IN 3D (DDM-3D)

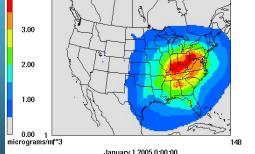
CMAQ V5.4 EDITION

SERGEY L. NAPELENOK US EPA

CMAQV5.4 DIAGNOSTICS, TOOLS, AND INSTRUMENTED MODELS WEBINAR

22 FEBRUARY 2023


The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.


DDM-3D AND ISAM IN CMAQ 5.4

- Both models are fully integrated into the base CMAQ code.
- Both have been released as part of the CMAQ package through github.
 - See https://github.com/USEPA/CMAQ for code and documentation.
- As in the past, both models can be enabled through build script options (precompiler flags), but from the same source code as the base CMAQ model.
- Configuring and running both models is still done through run script options and their own specific control files.

CMAQ-ISAM

- Provides source tracking information simultaneously with the concentrations/depositions output.
- Has been released in CMAQ since version 5.0.2
- Tracks pollutants from user-selected tag classes (e.g. SULFATE, OZONE, EC, etc.)
 - In the CMAQv5.4 release, all species are now available for tracking for every supported chemical mechanism.
- Track from Emissions Streams (online and offline) either domain-• wide or for user-defined geographical regions.
 - Additionally, always tracks initial conditions, boundary conditions, and "other" mass for complete mass accountability.

CMAQ-ISAM – MAIN SCIENCE UPDATES

- Added substantial flexibility for user specification on tracking assignments performed in the chemistry module.
 - Best explained through an example in the following slides

PREVIOUS ISAM IMPLEMENTATION

- The previous implementation (5.3) apportioned products of chemical reactions strictly proportionally by stoichiometry.
- For example:

ISO2 + NO -->

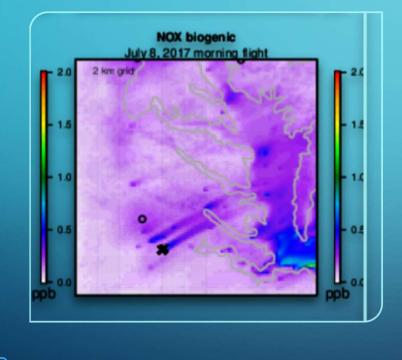
0.1*INTR + 0.9*NO2 + 0.673*FORM + 0.9*ISPD + 0.818*HO2 + 0.082*XO2H + 0.082*RO2

- Every source of ISO2 will get $\frac{1}{2}$ of each product (proportionally by emissions amounts)
- Every source of NO will get $\frac{1}{2}$ of each product (proportionally by emissions amounts).

PREVIOUS ISAM IMPLEMENTATION (2)

- The "fair" apportionment is necessary for a flexible tool design that can be used for any species in the chemical mechanism.
- However, for some features of ozone chemistry, the "fair" type of methodology may produce non-intuitive source attribution results (although strictly correct apportionment).

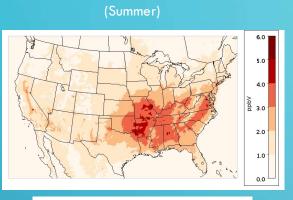
PREVIOUS ISAM IMPLEMENTATION (3)


• Looking at the same example reaction:

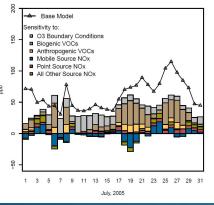
ISO2 + NO -->

0.1*INTR + 0.9*NO2 + 0.673*FORM + 0.9*ISPD + 0.818*HO2 + 0.082*XO2H + 0.082*RO2

- ISO2 is typically biogenic and NO is mostly from anthropogenic emissions (such as EGUs or mobile sources).
- The product NO2, therefore, becomes approximately $\frac{1}{2}$ biogenic.
- Further in time and/or space, the newly tagged biogenic NO2 can cycle back to NO and retain its biogenic source identity.


PREVIOUS ISAM IMPLEMENTATION (4)

 This rapid "relabeling" of NO from anthropogenic to biogenic can lead to some results where biogenic NOx (and O3) shows up in plumes intuitively viewed as anthropogenic (such as from power plants in the illustration here).


EXPANDED ISAM FUNCTIONALITY

- Option 1. Equal assignment (previous version).
- Option 2. If parent reactants include the species NO, NO2, NO3, HONO, or ANO3, assignment to these sources only. Reactions without these species proceed with equal assignment.
- Option 3. Option 2 with species list expanded to include reactive VOC species and radicals. Reactions without these species proceed with equal assignment.
- Option 4. If parent reactants include the reactive VOC species and radicals, assignment to these sources only. Reactions without these species proceed with equal assignment.
- Option 5. Assignment to VOC or Nox sources is based on the ratio of production of H2O2 to production of HNO3. Reactions without the nitrogen species listed above and reactive VOCs proceed with equal assignment.
- Additionally, the transitional value for Option 5 is also customizable (default is based on Sillman, 1995: PH2O2/PHNO3=0.35).

HCHO sensitivity to VOC emissions

Modeled Ozone Concentration and Ozone Sensitivities at Atlanta Site

CMAQ-DDM-3D

- Provides species sensitivity information simultaneously with the concentrations/depositions output.
 - Sensitivities are in the "forward" sense, *i.e.*, sensitivity of all species concentrations/depositions to specific, user defined parameters.
- Has been released in CMAQ since version 4.7.
- Parameters can include emissions streams (online and offline), initial conditions, boundary conditions, chemical reaction rates.
- Propagates the sensitivity fields through the model processes by differentiating the governing equations associated with each process.

CMAQ-DDM-3D

- The sensitivity calculations for gaseous and particulate species is done in essentially the same way as in the previous release (v5.2).
- Improvements visible to the user are from easier control file parameter definitions and full integration with the newer CMAQ emissions processing module.
- The more important improvement is the ability to calculate chemistry Jacobians inline.
 - Allows for more flexibility in using CMAQ-DDM-3D with different chemical mechanisms and allows the user to make (reasonable!) changes to the mechanism without breaking DDM-3D.

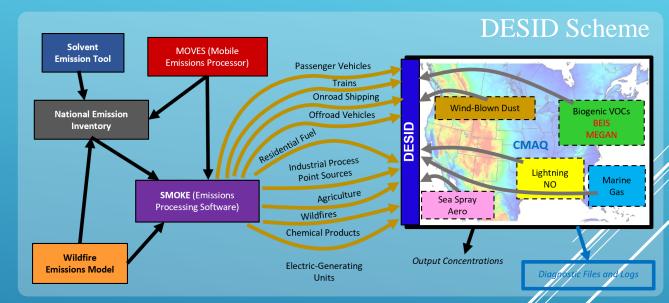
SUMMARY

- CMAQ-ISAM and CMAQ-DDM-3D can provide useful and complementary information for various purposes including development and evaluation of pollution control strategies, propagating uncertainties, future projections, and general understanding of model representation of the troposphere.
- Support for both should continue and be more timely, because they are now both fully integrated in the CMAQ model.
- There will be some minor updates/bug fixes (incorporating user feedback) to both models in CMAQv5.4+

CMAQv5.4 Diagnostics, Tools and Instrumented Models:

+ DESID + ELMO
+ Autochem + Budget Tool

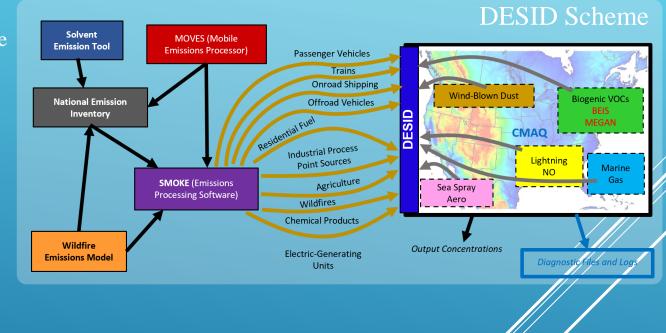
Streamlining tasks to make more time for Your ideas

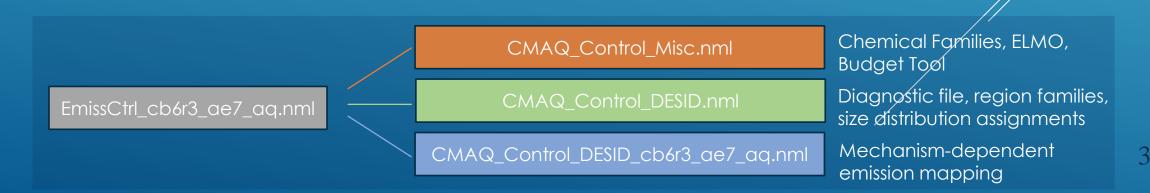

Ben Murphy US EPA ORD

22 February 2023

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.

DESID (The Detailed Emission Scaling, Isolation and Diagnostics module)


- ► First released with CMAQv5.3
- Centralizes emissions processing tasks including chemical mapping, unit conversions, instrumented model source assignments, etc.
- Considers emissions from offline sources (such as those processed using SMOKE) and online sources (e.g. wind-blown dust or biogenic VOCs)
- Users can run with multiple gridded emission files, scale a species from different emissions sources independently, turn off emissions from a particular source or geographic area.
- These tasks are accomplished by modifying human readable input namelists.



 Includes an extensive diagnostic output log to document chemical mapping and inform potential errors

DESID (The Detailed Emission Scaling, Isolation and Diagnostics module)

- Biogenic emission models available: BEIS4/BELD6 or MEGANv3.2 (1 km x 1 km BELD6 files are available with the 2020 NEI package or by request).
- ► Diagnostic file updates:
 - Time stepping is 100% consistent with the input emission files
 - Define any number of diagnostic files
 - Sum multiple streams to one diagnostic file
 - Choose individual variables, all variables or sum variables
- Resolved region scaling problems:
 - v5.3.3 algorithm results in errors at the boundary between two specially defined regions.
 - Better algorithm was developed, issue resolved in v5.4.
- Modified the EmissCtrl file into three files to minimize maintenance of inputs that are not mechanism-dependent.

A) I'd like one file with all my emissions rates (gridded, point, online, everything) as a column sum:

Desid_Diag	_Streams_Nml(1,:)=	= 'TOTAL'
Desid_Diag	_Fmt_Nml(1) =	= 'COLSUM'
Desid_Diag	_Spec_Nml(1,:) =	= 'ALL'

____ Could also use LAYER1 or 3D

B) I also want files for every stream, but only for SO₂ and Sulfate:

Desid_Diag_Streams_Nml(2,:)= 'ALL'
Desid_Diag_Fmt_Nml(2) = 'COLSUM'
Desid_Diag_Spec_Nml(2,:) = 'S02','AS04'

Automatically sums ASO4I, ASO4J, and ASO4K. Use 'ASO4I' if you just want Aitken mode sulfate, for example.

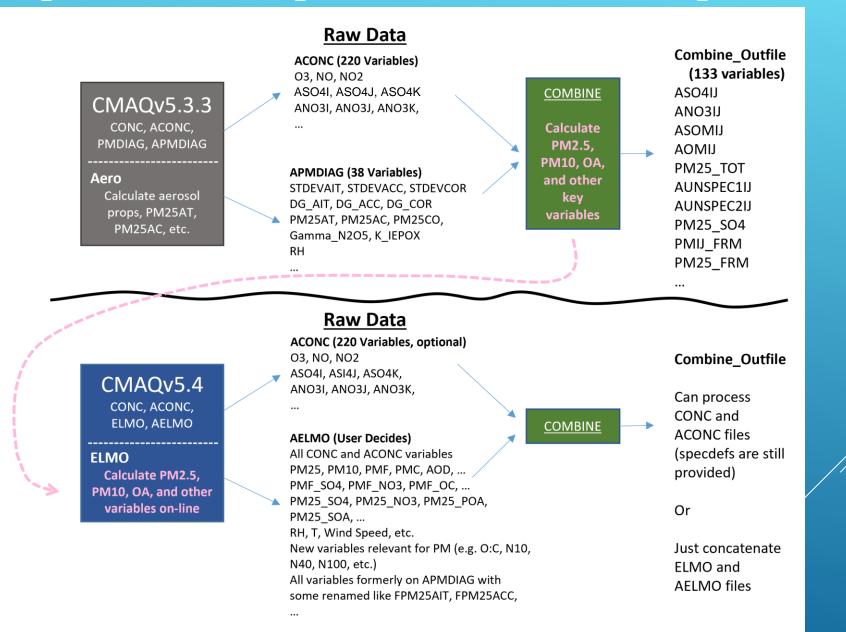
C) I have a wildfire point file and the stack_emis_lab in the CMAQ runscript is 'PT_WILDFIRE'. I need CO and EC from those emissions:

Desid_Diag_Streams_Nml(3,:)= 'PT_WILDFIRE'
Desid_Diag_Fmt_Nml(3) = '3D'
Desid_Diag_Spec_Nml(3,:) = 'AEC','CO'

DESID (The Detailed Emission Scaling, Isolation and Diagnostics module)
Example of new diagnostics interface in CMAQ_Control_DESID.nml:
D) I want to output all my fire EC and CO emissions summed up in one file, and I have a stream family 'FIRES' defined as the sum of 'PT_WILDFIRE', 'GRIDDED_RWC', and 'PT_RXFIRES':

Desid_Diag_Streams_Nml(4,:)= 'FIRES'
Desid_Diag_Fmt_Nml(4) = '3D'
Desid_Diag_Spec_Nml(4,:) = 'AEC','CO'

CMAQ_Control_DESID.nml


E) I changed my mind. I want those fire emissions separated on their own files, not summed together:

Desid_Diag_Streams_Nml(4,:)= 'FIRES*'
Desid_Diag_Fmt_Nml(4) = '3D'
Desid_Diag_Spec_Nml(4,:) = 'AEC','CO'

-or-

C	Desid_Diag_Streams_Nml(4,:)= 'PT_WILDFIRES' Desid_Diag_Fmt_Nml(4) = '3D' Desid_Diag_Spec_Nml(4,:) = 'AEC','CO'
C	Desid_Diag_Streams_Nml(5,:)= 'GRIDDED_RWC' Desid_Diag_Fmt_Nml(5) = '3D' Desid_Diag_Spec_Nml(5,:) = 'AEC','CO'
C	Desid_Diag_Streams_Nml(6,:)= 'PT_RXFIRES' Desid_Diag_Fmt_Nml(6) = '3D' Desid_Diag_Spec_Nml(6,:) = 'AEC','CO'

CMAQ_Control_DESID.nml

9

- Online processing of aggregate variables you love
- ▶ Writes out raw (i.e., CONC and ACONC) variables too
- Instantaneous and/or average daily files with hourly resolution (COMBINE tool is used to make monthly files with hourly resolution)
- ► Can choose 2D or 3D
- Can make your own variables (tried to make it user friendly; recommend asking for help if you get stuck)
- ► Future:
 - ▶ make any number of files you want and select which variables you want on which files
 - Support other CMAQ modules: deposition, ISAM, etc.

All of these variables can be output directly from CMAQ on request! Just use the CMAQ_Control_Misc.nml file.

Aerosol Mass
PM_MASS
PMU_MASS
PMF_MASS
PMC_MASS
PMNUC_MAS
S
PMAIT_MASS
PMACC_MA
SS
PM01
PM1
PM25
PM10
PM25TO10
PMAMS

PM2.5
Speciation
PM25_SO4
PM25_NO3
PM25_NH4
PM25_CL
PM25_NA
PM25_EC
PM25_OC
PM25_OA
PM25_MG
PM25_K
PM25_CA
PM25_OTHER
PM25_FE
PM25_SI
PM25_TI
PM25_MN
PM25_AL
PM25_SOIL
PM25_UNSP1
PM25_UNSPCRS
PM25_HP

							Fine Speciation	
		nlicit and L	umpod C		Iodel Output	Modulo	PMF_SO4	
		phen and L	umpeu C			Module	PMF_NO3	
							PMF_NH4 PMF_CL	Coarse
All of t	hese variab	les can be output	directly from (CMAQ on red	quest!		PMF_NA	Speciation
Just use	e the CMA	Q_Control_Misc.n	ml file				PMF_EC	PMC_SO4
	Aerosol Mass						PMF_OC	PMC_NO3
Aerosol	PM MASS						PMF_OA	PMC_NH4
Properties	PMU_MASS						PMF_FE	PMC_CL
STDEV	PMF_MASS		PM1.0				PMF_AL	PMC_NA
DRY_DG	PMC_MASS		Speciation	PM2.5			PMF_SI	PMC_MG
WET_DG	PMIC_MASS PMNUC_MAS		PM1_SO4	Speciation	and the second		PMF_TI	PMC_K
WET_M2	S		PM1_NO3	PM25_SO4	AMS-Relevant		PMF_CA PMF_MG	PMC_CA
DRY_M3	PMAIT_MASS		PM1_NH4	PM25_NO3	Speciation		PMF_K	
WET_M3	PMACC MA		PM1_CL	PM25_NH4	PMAMS_SO4		PMF MN	
DRY_DENS	SS		PM1_NA PM1_EC	PM25_CL	PMAMS_NO3		PMF H2O	
WET_DENS	PM01		PM1_C	PM25_NA	PMAMS_NH4		PMF_SOILIMPV	
PM_SRF	PM1		PM1_OC	PM25_EC	PMAMS_CL		PMF_UN_IMPV1	
PMU_SRF	PM25		PM1_MG	PM25_OC	PMAMS_OA		PMF_UN_IMPV2	
PMF_SRF	PM10		PM1 K	PM25_OA	PMAMS_OTOC		PMF_HP	
PMC_SRF	PM25TO10		PM1 CA	PM25_MG			PMF_HPMOLAL	
FPM01	PMAMS		PM1_OTHER	PM25_K PM25 CA			PMF_PH	
FPM1			PM1_FE	PM25_OTHER			PMF_POC	
FPM25			PM1_SI	PM25_FE			PMF_SOC PMF_POA	
FPM10			PM1_TI	PM25_SI			PMF_SOA	
FPM25TO10			PM1_MN	PM25 TI			PMF_NCOM	
FAMS			PM1_AL	PM25_MN			PMF_OMOC	
			PM1_SOIL	PM25_AL			PMF_OTOC	
			PM1_UNSP1	PM25_SOIL			PMF_ASOA	
			PM1_UNSPCRS	PM25_UNSP1			PMF_BSOA	
			PM1_HP	PM25_UNSPCRS			PMF_CLDGLY	
				PM25_HP			PMF_ISOPSOA	"PMF" = i-mode +
							PMF_IEPOXSOA	mo
							PMF_MTNSOA	"PMC" = k-mo
These variables are	e repeated for each	n mode (e.g., when STDEV is	selected, STDEVACC	C, STDEVAIT, and S	TDEVCOR will all be output)		PMF_MTSOA	

"PMC" = k-mode

All of t	hese variabl	plicit and L les can be output 2_Control_Misc.r	directly from			out Module	Fine Speciation PMF_SO4 PMF_NO3 PMF_NH4 PMF_CL PMF_NA PMF_EC PMF_OC	Coarse Speciation PMC_SO4 PMC_NO3
Aerosol	PM_MASS	Aerosol				PM Toxics	PMF_OA	PMC_NH4 PMC_CL
Properties STDEV	PMU_MASS	Number	D141.0			PM25_HDIESEL PM25 HBE	PMF_FE PMF_AL	PMC_NA
	PMF_MASS	PM_NUM	PM1.0 Speciation			PM25_HCD	PMF_SI	PMC_MG
DRY_DG	PMC_MASS	PMU_NUM	PM1_SO4	PM2.5		PM25_HCR3	PMF_TI	PMC_K
WET_DG WET_M2	PMNUC_MAS	PMF_NUM	PM1_NO3	Speciation	AMS-Relevant	PM25_HCR6	PMF_CA	PMC_CA
	S	PMC_NUM	PM1_NH4	PM25_SO4	Speciation	PM25_HCR	PMF_MG	TMC_CA
DRY_M3	PMAIT_MASS	N10	PM1_CL	PM25_NO3	PMAMS_SO4	PM25_HPB	PMF_K	
WET_M3	PMACC_MA	N20	PM1_NA	PM25_NH4 PM25_CL	PMAMS_NO3	PM25_HMN	PMF_MN	
DRY_DENS	SS	N40	PM1_EC	PM25_NA	PMAMS_NH4	PM25_HNI	PMF_H2O	
WET_DENS	PM01	N100	PM1_OC	PM25_EC	PMAMS_CL	PM25_HAS	PMF_SOILIMPV	
PM_SRF	PM1	Other Variables	PM1_OA	PM25_OC	PMAMS_OA	PM25_HG PM10_HDIESEL	PMF_UN_IMPV1 PMF_UN_IMPV2	
PMU_SRF	PM25	TNO3	PM1_MG	PM25_OA	PMAMS_OTOC	PM10_HBE	PMF HP	
PMF_SRF	PM10	TNO3TOT	PM1_K	PM25_MG		PM10 HCD	PMF HPMOLAL	
PMC_SRF	PM25TO10	PM25_FRM	PM1_CA	PM25_K		PM10_HCR3	PMF_PH	
FPM01	PMAMS	PMF FRM	PM1_OTHER PM1_FE	PM25_CA		PM10_HCR6	PMF_POC	
FPM1	Meteorology	AOD_550	PM1_SI	PM25_OTHER		PM10_HCR	PMF_SOC	
FPM25	RH	PM_EXT_550	PM1_TI	PM25_FE	PM2.5 - PM10.0	PM10_HPB	PMF_POA	
FPM10	TA	GAMMA_N2O5	PM1 MN	PM25_SI	Speciation	PM10_HMN	PMF_SOA	
FPM25TO10	TSURF	GAMMA_N2O5K	PM1_AL	PM25_TI PM25_MN	PM25TO10_SO4	PM10_HNI	PMF_NCOM	
FAMS	PRES	YIELD_CLNO2	PM1_SOIL	PM25_MIN PM25_AL	PM25TO10_NO3	PM10_HAS	PMF_OMOC PMF OTOC	
	DZ	YIELD_CLNO2K	PM1_UNSP1	PM25_SOIL	PM25TO10_NH4	PM10_HG PM25_BENAPY	PMF_ASOA	
	ZH	GAMMA_IEPOX	PM1_UNSPCRS	PM25_UNSP1	PM25TO10_CL	PM10_BENAPY	PMF_BSOA	
	CFRAC	K_IEPOX	PM1_HP	PM25_UNSPCRS	PM25TO10_NA	PMF_BENAPY	PMF_CLDGLY	
	PV	GAMMA_IMAE		PM25_HP		GAS_BENAPY	PMF_ISOPSOA	
	DENS					BENAPY_FAERO	PMF_IEPOXSOA	
	RHOJ						PMF_MTNSOA	mode
	iti i O J						PMF_MTSOA	"PMC" = k -mode

These variables are repeated for each mode (e.g., when STDEV is selected, STDEVACC, STDEVAIT, and STDEVCOR will all be output)

								Coarse	
All of t	hese variah	les can be outp					PMF_CL	Speciation	
		· · · · · · · · · · · · · · · · · · ·	A 11	1 . 1			PMF_NA	PMC_SO4	
Just use the CMAQ_Control_Mis All raw gas and particle species are					PMF_EC	PMC_NO3			
	Aerosol Mass		2	available too!			PMF_OC		
Aerosol	PM MASS	Aerosol	L L L L L L L L L L L L L L L L L L L			PM Toxics	PMF_OA	PMC_NH4	
Properties	PMU MASS	Number 📕				PM25_HDIESEL	PMF_FE	PMC_CL	
STDEV	PMF_MASS	PM_NUM	PM1.0			PM25_HBE	PMF_AL	PMC_NA	
DRY_DG	_	PMU_NUM	Speciation	PM2.5		PM25_HCD	PMF_SI	PMC_MG	
WET_DG	PMC_MASS	PMF NUM	PM1_SO4	Speciation		PM25_HCR3	PMF_TI	PMC_K	
WET_M2	PMNUC_MAS	PMC NUM	PM1_NO3	PM25_SO4	AMS-Relevant	PM25_HCR6	PMF_CA	PMC_CA	
DRY_M3	2	N10	PM1_NH4	PM25_NO3	Speciation	PM25_HCR	PMF_MG		
WET_M3	PMAIT_MASS		PM1_CL	PM25_NH4	PMAMS_SO4	PM25_HPB	PMF_K		
DRY_DENS	PMACC_MA	N20	PM1_NA	PM25_CL	PMAMS_NO3	PM25_HMN	PMF_MN		
	SS	N40	PM1_EC	PM25_NA	PMAMS_NH4	PM25_HNI	PMF_H2O		
WET_DENS	PM01	N100	PM1_OC	PM25_EC	PMAMS CL	PM25_HAS	PMF_SOILIMPV		
PM_SRF	PM1	Other Variables	PM1_OA	PM25_OC	PMAMS OA	PM25_HG	PMF_UN_IMPV1		
PMU_SRF	PM25		PM1_MG	PM25_OA		PM10_HDIESEL	PMF_UN_IMPV2		
PMF_SRF	PM10	TNO3	PM1_K	PM25 MG	PMAMS_OTOC	PM10_HBE	PMF_HP		
PMC_SRF	PM25TO10	TNO3TOT	PM1_CA	PM25_K		PM10_HCD	PMF_HPMOLAL		
FPM01	PMAMS	PM25_FRM	PM1_OTHER	PM25_CA		PM10_HCR3	PMF_PH		
FPM1		PMF_FRM	PM1_FE	PM25_OTHER		PM10_HCR6	PMF_POC		
FPM25	Meteorology	AOD_550	PM1_SI	PM25_FE	PM2.5 - PM10.0	PM10_HCR	PMF_SOC		
FPM10	RH	PM_EXT_550	PM1_TI	PM25_SI	Speciation	PM10_HPB	PMF_POA		
FPM25TO10	TA	GAMMA_N2O5	PM1_MN	PM25_TI		PM10_HMN	PMF_SOA		
FAMS	TSURF	GAMMA_N2O5K	PM1_AL	PM25_MN	PM25TO10_SO4	PM10_HNI	PMF_NCOM		
FAM5	PRES	YIELD CLNO2	PM1_SOIL	PM25_AL	PM25TO10_NO3	PM10_HAS	PMF_OMOC PMF_OTOC		
	DZ	YIELD CLNO2K	PM1_UNSP1	PM25_SOIL	PM25TO10_NH4	PM10_HG	PMF ASOA		
	ZH	GAMMA_IEPOX	PM1_UNSPCRS	PM25_UNSP1	PM25TO10_CL	PM25_BENAPY	PMF_BSOA		
			PM1_HP	PM25_UNSPCRS	PM25TO10_NA	PM10_BENAPY PMF_BENAPY	PMF CLDGLY		
	CFRAC	K_IEPOX		PM25_HP		GAS_BENAPY	PMF_ISOPSOA		
	PV	GAMMA_IMAE				BENAPY_FAERO	PMF_IEPOXSOA	"PMF" = i-mode +	j-
	DENS						PMF MTNSOA	mod	
	RHOJ						PMF_MTSOA	"PMC" = k-mod	de
							1111 _11100/1		

Fine Speciation

PMF_SO4 PMF_NO3 PMF_NH4

These variables are repeated for each mode (e.g., when STDEV is selected, STDEVACC, STDEVAIT, and STDEVCOR will all be output)

A) I don't want a million variables. I just want O_3 , NO_x and $PM_{2.5}$.

```
&elmo_avrg
Avrg_Layer_Top = 1
Avrg_Layer_Bot = 1
Avrg_Vars_Nml = 'N02','N0','03','PM25'
```

If you have not defined NO_X as a chemical family

```
&elmo_avrg
Avrg_Layer_Top = 1
Avrg_Layer_Bot = 1
Avrg_Vars_Nml = 'NOX','O3','PM25'
```

If you have defined NO_{χ} as a chemical family

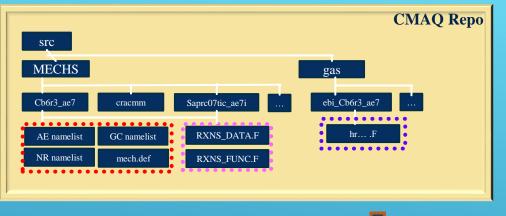
B) I want to look at all fine-mode species, but I forget which ones are available. I also want to check total $PM_{2.5}$ as well as isoprene and OH levels against some measurements or other model data.

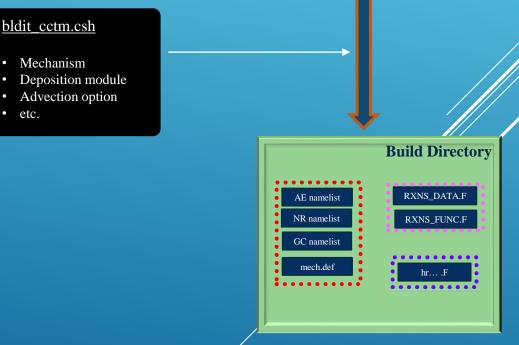
```
&elmo_avrg
Avrg_Layer_Top = 1
Avrg_Layer_Bot = 1
Avrg_Vars_Nml = 'FINE_SPECIES','PM25','ISOP','OH'
```

C) I'm going to compare to AMET, and I don't want to forget any important variables. Oh, and I would like to compare to satellite data too.

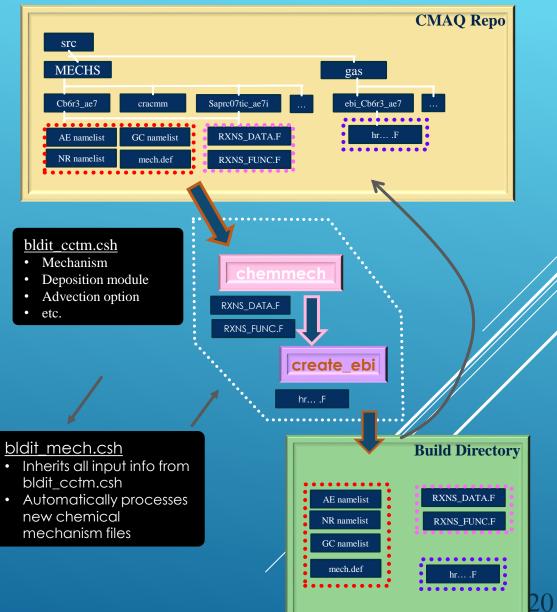
&elmo_avrg		
Avrg_Layer_Top	=	1
Avrg_Layer_Bot	=	1
Avrg_Vars_Nml	=	'AMET','SAT'

SAT Variables				
Met Vars	Chem Vars			
DENS	NO2			
DZ	SO2			
ZH	03			
CFRAC	CO			
PV	FORM			
PRES	NH3			
ТА	AOD_550			


D) Please stop all this foolishness! Just give me what I had in v5.3.3.


&elmo_avrg Avrg_Layer_Top = 1 Avrg_Layer_Bot = 1 Avrg_Vars_Nml = 'DEFAULT'

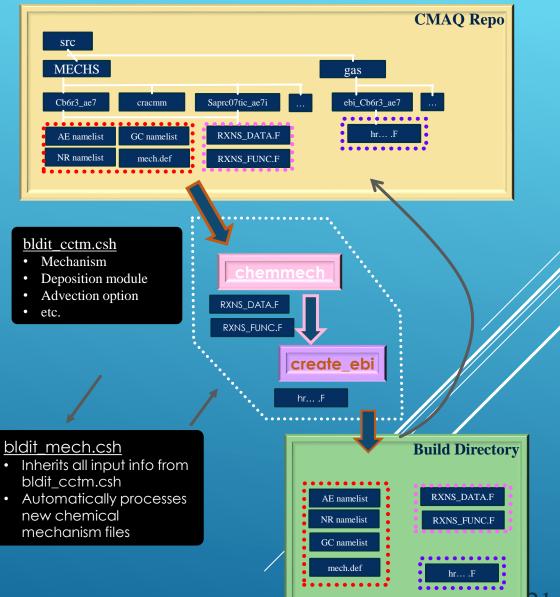
Pause for Check-in


CMAQ_Control_Misc.nml

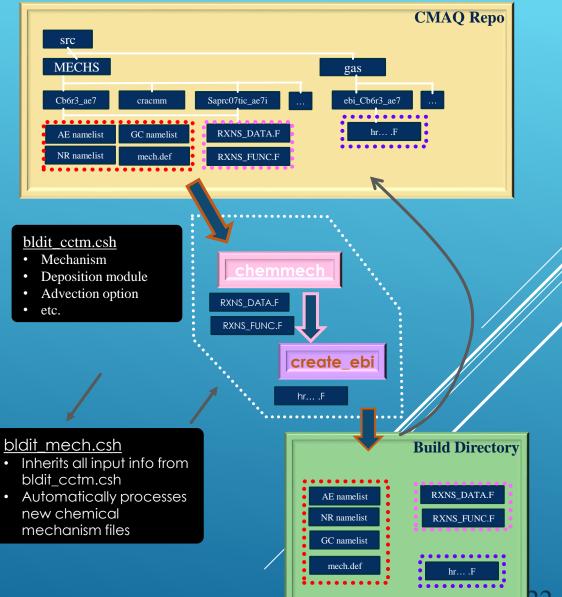
Many chemical mechanism-relevant files are copied from the CMAQ repo to the build directory by the build process, kicked off by the bldit_cctm.csh script. —

- The chemmech and create_ebi utilities are now available to generate source code files for new mechanisms.
- The bldit_cctm.csh script passes model configuration options (e.g. mechanism choice) to the bldit_mech.csh script which executes the reaction code generation utilities and moves files into the build directory as required.

If you want to make a new mechanism by changing the reactions in mech.def or species in the GC namelist, uncomment one line of code in bldit_cctm.csh to reprocess new mechanism source code files.


set build_mech #> uncomment to build mechanism source code files using the #> chemmech utility.

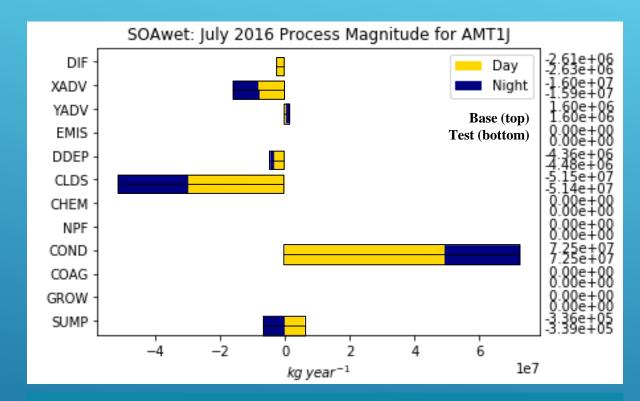
 If you want your new mechanism to overwrite an existing mechanism, uncomment the next line as well


set clobber_mech

when commented, the bldit_mech.csh script will halt if #> newly created mechanism files are attempting replace

- #> existing ones. When uncommented, the existing files
- #> will be overwritten.

- If you are adding an aerosol, there are more places in the source code to add information including:
 - AERO_DATA registry table of aerosol chemical species
 - SOA_DEFN registry table of organic aerosol properties
 - hlconst table of Henry's Law coefficient parameters
 - CMAQ_Control_STAGE.nml deposition parameters if using STAGE



Pause for Check-in

22

- A new Budget Reporting Tool is available to quantify the impact of individual model processes on each atmospheric species across the modeling domain.
- ► CCTM_BUDGET_[...].txt
- ► Hourly resolution, total mass (kg hr⁻¹).
- Makes a text file for every species you select. You can also ask for a sum of species.
- ► Helps diagnose problematic model configurations like:
 - Emissions are present for a species that shouldn't be emitted.
 - Boundary gains/losses are not as expected.
 - Cloud/Dry deposition scavenging relative doesn't match chemical properties.
- Helps inform which processes are driving domain-wide burden (e.g., deposition, advection, chemistry).
- Can detect mass conservation issues.

Available Processes					
Transport	Non-Transport				
VDIFF	EMIS				
ZADV	DRY DEP				
HDIFF	PVO3				
WEST_IN	CLOUDS				
WEST_OUT	CHEM				
EAST_IN	CONDENS				
EAST_OUT	COAG				
NORTH_IN	NPF				
NORTH_OUT	GROWTH				
SOUTH_IN					
SOUTH_OUT	RESIDUAL				

<u>Example:</u> made a model change for SOA (simulated one year). Verified that the total rates in kg yr⁻¹ of each process did not change when going from base (top) to new (bottom). Stratified results by day and night as well.

A) Request all CMAQ chemical species be output to budget file.

&Budget_Options Budget_Diag = .TRUE. BudgetVariables = 'ALL' /

B) Limit budget output to just O_3 , NO_2 , and accumulation-mode EC.

&Budget_Options Budget_Diag = .TRUE. BudgetVariables = '03','N02','AECJ' /

C) Output budget for all EC summed together (AECI + AECJ). If the mode-suffix letter is omitted, the bulk aerosol species is assumed. Also output for O_3 , NO_2 , and a chemical family names VOC that should be defined in the "ChemicalFamilies" section of CMAQ_Control_Misc.nml.

```
&Budget_Options
Budget_Diag = .TRUE.
BudgetVariables = '03','N02','AEC','V0C'
/
```

Summary and Resources

- ► DESID new diagnostic approaches to help you confirm and document emission perturbations.
- ► ELMO simplified output. Just get $PM_{2.5}$ if you just want $PM_{2.5}$.
- ► Autochem frictionless implementation of new chemistry or chemical species.
- ▶ Budget Tool domain-wide output of species burden and process rates (hourly resolution; human readable).
- User Guide and Tutorials:
 - DESID: <u>Appendix B: Emission Control</u> | <u>Tutorial: Prescribing Emissions Using DESID</u>
 - ► ELMO: <u>Appendix F: ELMO</u>
 - Autochem: <u>Tutorial: Modifying a Chemical Mechanism in CMAQ</u>
 - Budget Tool: <u>Chapter 9: Process Analysis and Budget (Section 9.7)</u>
 - ► Online Help: <u>CMAS Forum</u>

Thank you to CMAS, the CMAQ Team, and <u>You</u> for listening and using CMAQ to further Science and Environmental Quality!