
I/O API: New Stuff in Versions 3.x

Table of Contents
I/O API: New Stuff in Versions 3.x...1

Contents / Agenda..1
On Github: I/O API-3.2...1
MS-Windows support..2
CF-compliant geospatial metadata option...2
PnetCDF/MPI distributed I/O option...2
I/O API Versions 3.2 and 3.2-large...3
Snoop-Mode option for read-operations..4
New Module MODATTS3..4
New Module MODGCTP..5
New Module MODNCFIO..6
New Module MODMPASFIO and related M3Tools Programs..6
New Module MODWRFIO and related M3Tools Programs...7
Input File Lists: Easy Processing for Sequences of Files..7
New Fortran-90 Generic Routines...8
M3Tools Programs..9
New SUBROUTINEs and FUNCTIONs...10
gfortran hacks...10
Climatology-Year Versions...11
Memory-Model Issues...11
Other Issues..12
To-Do List/Discussion...16

I/O API: New Stuff in Versions 3.x

i

I/O API: New Stuff in Versions 3.x

Contents / Agenda

On Github: I/O API-3.2•
MS-Windows support•
CF-compliant geospatial metadata option•
PNCF/MPI distributed I/O option•
I/O API Versions 3.2 and 3.2-large•
Snoop-Mode option for read-operations•
New Module MODATTS3•
New Module MODGCTP•
New Module MODNCFIO•
New Module MODMPASFIO•
New Module MODWRFIO•
Input file-lists•
New Fortran-90 Generic Routines•
M3Tools Programs•
New SUBROUTINEs and FUNCTIONs•
gfortran hacks•
netCDF-4 Issues•
Climatology-year versions•
Memory-Model issues•
Other Issues•
To-Do List/Discussion•

On Github: I/O API-3.2

Version 3.2 of the I/O API library code is available here for download in gzipped-tar source
code form from the CMAS Center web-site, or is available on GitHub from
https://github.com/cjcoats/ioapi-3.2. To install a distribution-copy using git directly
from GitHub, go to the directory under which do the installation, and then do the command

 git clone https://github.com/cjcoats/ioapi-3.2

Sub-directories and files are:

ioapi: library source directory♦
M3Tools: tools-program source directory♦
LICENSE: GPL-2 text♦
Makefile: Top-level make file♦
Makefile.template: master copy of top-level make file♦
README.txt: ASCII "readme"♦
README.md: markup-language "readme"♦
VERSION.txt: tarball-release date file♦
exclude: file used in make gtar tarball-creation♦

The full set of documentation is also git-configuration-managed as HTML pages, in a manner
consistent with the release-tarballs and the CMAS Center I/O API web-pages. It can be found

I/O API: New Stuff in Versions 3.x 1

https://www.cmascenter.org/ioapi/download/ioapi-3.2.tar.gz
https://github.com/cjcoats/ioapi-3.2

at https://cjcoats.github.io/ioapi/AA.html

Back to Contents

MS-Windows support

I/O API-3.2:

Support for 32-bit and 64-bit windows builds of the I/O API under CygWin, using gfortran
and gcc. Note that Makefiles must be changed slightly by adding an extra .dll suffixes to
the library-directives for the netCDF libraries:

 ... -lnetcdff.dll -lnetcdf.dll ...

See https://cjcoats.github.io/ioapi/AVAIL.html#win64

Back to Contents

CF-compliant geospatial metadata option

CF (Climate and Forecast) netCDF metadata conventions are used by a number of global
climate and meteorology models. This allows the direct import of model data directly into a
number of GIS, analysis, and graphics packages, including GRASS and ARC-INFO. These
conventions define metadata that provide a definitive description of what the data in each
variable represents, and the spatial and temporal properties of the data. This enables users of
data from different sources to decide which quantities are comparable, and facilitates building
applications with powerful extraction, regridding, and display capabilities.
See http://cfconventions.org/ and
https://en.wikipedia.org/wiki/Climate_and_Forecast_Metadata_Conventions

Automatic creation of the relevant CF-compliant geospatial metadata during file-creation can
be turned on by environment variable IOAPI_CFMETA:

setenv IOAPI_CFMETA Y

or by calling subroutine INITCF() in MODULE MODATTS3: see below.

(There are portions of the CF standard that are not reasonable in this context, particularly as regards
standardization of variable names and units in forms that are not well-suited for atmospheric chemistry
modeling; these are not supported, and in fact production of them cannot be automated...)

Back to Contents

PnetCDF/MPI distributed I/O option

The I/O API can now be configured to use PnetCDF to provide distributed I/O on a
file-by-file basis for CMAQ (turning this on is a build-time option for the I/O API).
Distributed I/O is only supported for gridded files on the cross-point grid; to turn it on for a

I/O API: New Stuff in Versions 3.x

On Github: I/O API-3.2 2

https://cjcoats.github.io/ioapi/AA.html
https://cjcoats.github.io/ioapi/AVAIL.html#win64
http://cfconventions.org/
https://en.wikipedia.org/wiki/Climate_and_Forecast_Metadata_Conventions

particular file in a CMAQ run, prefix the path-name by a MPI: prefix, as in the example
below:

 setenv CHEMCONC3D MPI:/mydir/cmaq.conc.US36_CRO.2015233.ncf

See this description.

I/O API libraries and builds using PnetCDF are not link compatible with ordinary builds, and
should be kept carefully separate from them. You can build the I/O API to use PnetCDF/MPI
distributed I/O using make -f Makefile.pncf and the following binary types and
Makeinclude files (or you can use them as templates to build your own custom binary
type):

Makeinclude.Linux2_x86_64gfortmpi
Makeinclude.Linux2_x86_64ifortmpi
Makeinclude.Linux2_x86_64pgmpi
Makeinclude.Linux2_x86_64sunmpi

When performing the link-step to create model-executables, you will need to put the PnetCDF
libraries in the library-build directory, and add the PnetCDF libraries to the link-step
command line:

... -lpnetcdf -lnetcdff -lnetcdf ...

See also MODULE MODNCFIO below.

Back to Contents

I/O API Versions 3.2 and 3.2-large

I/O API Version 3.2 as of Aug. 1, 2019, has been enhanced to support up to 256 files (each
with up to 2048 variables. There should be no compatibility issues with this change, since the
maximum-file parameter MXFILE3 is only used internally by the I/O API, and should not be
needed by any external program.

For use in CMAQ's DDM and ISAM versions, there is an additional version,
I/O API-3.2-large that supports up to 512 files, each with up to 16384 variables; it may be
downloaded from the CMAS web-site as ioapi-3.2-large.tar.gz. There is an accompanying
set of M3Tools programs.

Note that executable programs built using 3.2-large will use substantially more memory than
programs built with normal 3.2, and may encounter performance degradation due to the extra
strain that large-mode places on your computer's memory system.
Version 3.2-large should be kept carefully separate from normal 3.2: object-files and
libraries built with the one are not compatible with object-files or libraries built with the
other. Mixing the two versions can lead to hard-to-diagnose errors.

Back to Contents

I/O API: New Stuff in Versions 3.x

PnetCDF/MPI distributed I/O option 3

Snoop-Mode option for read-operations

The I/O API can now be configured (e.g., for forecast-modeling-system operations) to enable
"model-pipelining" by responding to end-of-file conditions with multiple re-tries, controlled
by environment variables SNOOPTRY3, SNOOPSECS3:

If SNOOPTRY3, SNOOPSECS3 > 0: when read-operations READ3(),
XTRACT3(), INTERP3(), CHECK3(), or DDTVAR3() encounter
end-of-file, they will re-try for up to SNOOPTRY3 attempts, with delay
SNOOPSECS3 seconds in between attempts.

If SNOOPTRY3 = 0, SNOOPSECS3 > 0 then the number of re-tries as
above is (almost) unlimited.

If SNOOPTRY3 < 0 or SNOOPSECS3 ≤ 0, then Snoop Mode is turned
off.

This not only allows the generation of early-hour forecast products well before the entire
forecast is complete, it also enables the operating system to make better use of its internal
I/O-buffers, further increasing modeling system efficiency.

Unfortunately, both CMAQ and SMOKE do not allow easy use of this capability because
their program-codes insist (inappropriately!) that all time steps of all input data be available
before model-start.

Back to Contents

New Module MODATTS3

New MODULE MODATTS3 replaces MODULE MATXATTS (so that all USE MATXATTS
statements need to become USE MODATTS3 in your codes):

Matrix-attribute routines (add extra netCDF file attributes to describe input and
output grids for matrix-files):

INITMTXATT()◊
GETMTXATT()◊
SETMTXATT()◊
CHKMTXATT()◊
ENDMTXATT()◊

♦

CF-convention geospatial-metadata routines, turned on by environment variable
IOAPI_CFMETA, make newly-created files CF compliant:

setenv IOAPI_CF Y

INITCF()◊
SETCF()◊
ENDCF()◊

♦

"Standard" CMAQ data structures and routines for CMAQ metadata, turned on by
environment variable IOAPI_CMAQMETA:

♦

I/O API: New Stuff in Versions 3.x

Snoop-Mode option for read-operations 4

http://cfconventions.org/

setenv IOAPI_CMAQMETA Y

INITCMAQ()◊
ISCMAQ()◊
GETCMAQ()◊
LOGCMAQ()◊
SETCMAQ()◊
ENDCMAQ()◊

Place-holder for "standard" SMOKE metadata data structures and routines (what this
metadata contains needs to be determined...), turned on by environment variable
IOAPI_SMOKEMETA:

setenv IOAPI_SMOKEMETA Y

INITSMOKE()◊
ISSMOKE()◊
GETSMOKE()◊
LOGSMOKE()◊
SETSMOKE()◊
ENDSMOKE()◊

Developing the data dictionary for standard SMOKE metadata is an open issue
below, that is needed before the "guts" of these routines can be filled in.

♦

Back to Contents

New Module MODGCTP

New MODULE MODGCTP with all the coordinate-transform related routines and
INTERFACEs:
Old but modified: (moved from MODULE M3UTILIO)

INTERFACE for GTPZ0()♦
INTERFACEs and new implementations for GTPZ0()-spheroid initialization
procedures SETSPHERE(), INITSPHERES(), SPHEREDAT()

♦

INTERFACEs and new implementations for
single-precision/single-point/specific-projection coordinate-transform functions
INITPROJ(), ..., LAMBERT(), ..., ALB2EQM()

♦

New:
Generic (single-point/scattered-point-array) coordinate-transform procedure
XY2XY()

♦

Grid-node-array generic coordinate-transform procedure GRID2XY()♦
High-performance OpenMP-Parallel generic bilinear interpolation package
GRID2INDX(), PNTS2INDX(), INDXMULT()

♦

PARAMETERs STDSPHERES(0:21) and SPHERENAMES(0:21) for GCTP
spheroid names and indices;

♦

GTPZ0()-argument initialization procedure M3TOGTPZ()♦

Back to Contents

I/O API: New Stuff in Versions 3.x

New Module MODATTS3 5

New Module MODNCFIO

This module exists for two reasons: to reconcile problems between netCDF and pnetCDF for
use in distributed I/O (above), and to provide high level I/O facilities for "Raw netCDF".

Due to inconsistencies between them, it was difficult to use the vendor supplied INCLUDE
files netcdf.inc (or NETCDF.EXT) and pnetcdf.inc for the I/O API Distributed-I/O Mode:
the latter defined some but not all of the netCDF definitions that were needed, so it was not
possible to use #ifdefs to select between them. New MODULE MODNCFIO puts all the
definitions in a consistent form in one place (with conditional compilation, to determine
whether or not PnetCDF is active).

This module also supplies new routines for use with a specified "raw netCDF" file:

CREATENC() creates a new "raw netCDF" file, according to the supplied file
definition.

♦

DESCNCVAR() returns the list of variables and their units, types, and dimensions,♦
READNCVAR() is a generic routine that reads a specified 1-D, 2-D, 3-D, or 4-D
variable or time step of a variable of type INTEGER, REAL, REAL*8, INTEGER*1,
or INTEGER*2, with both fully-dimensioned and single-indexed forms for the
output-buffers from a "raw netCDF" file

♦

WRITENCVAR() is a generic routine that writes a specified variable or time step of a
variable to a specified "raw netCDF" file

♦

Note that directly manipulating netCDF files using the low level access routines provided by
netCDF, while doing proper error checking and logging is quite tedious (which is reflected in
the fact that MODULE MODNCFIO requires about 20,000 lines of code to do these tasks (You
don't want to have to write all that code for yourself from scratch!>

The latest version of SMOKE uses READNCVAR() to read global gridded emissions data.
Many other uses (e.g., to read INTEGER*2 gridded NLDAS land-cover for CONUS) can
easily be imagined.

Back to Contents

New Module MODMPASFIO and related M3Tools Programs

MPAS is a potentially-global unstructured-grid model for meteorology, land surface, and
atmospheric chemistry modeling that has been proposed for the next generation of EPA air
quality modeling (among other things). See
https://mpas-dev.github.io/files/documents/MPAS-MeshSpec.pdf for the MPAS grid and
netCDF-file specifications. Note that MPAS grid definitions and MPAS-netCDF-format file
specifications are very complex.

New MODULE MODMPASFIO provides a copy of the MPAS required grid related and
indexing variables, together with routines to initialize them, perform various grid related
tasks, and to read and writhe time independent and time stepped MAPS-format-netCDF files.
This is a really massive chunk of code, managing the hugely-complex detail that is required
for MPAS related programming.

I/O API: New Stuff in Versions 3.x

New Module MODNCFIO 6

https://mpas-dev.github.io/files/documents/MPAS-MeshSpec.pdf

There are also four related M3Tools programs:

mpasdiff: compute per-variable and per-layer-range-of-variable statistical
comparisons between MPAS-format-netCDF files

♦

mpasstat: compute statistics for variables and layer-ranges-of-variable in a
MPAS-format-netCDF file

♦

mpastom3: interpolate variables from MPAS-format-netCDF files to GRIDDED I/O
API files; and

♦

mpaswtest: sample program for MPAS grid manipulation, that does MPAS-grid
allocation of emissions line sources.

♦

Back to Contents

New Module MODWRFIO and related M3Tools Programs

This module contains routines and INTERFACEs for reading and writing WRF format
netCDF files:

OPENWRF(): opens the indicated WRF-netCDF format file for read or read/write.♦
CRTWRF(): Opens/creates a new WRF-netCDF format file for read/write.♦
READWRF(): Reads the indicated time step for the indicated variable from the
current WRF-netCDF format file. Generic, for 1-D, 2-D, and 3-D variables of types
INTEGER, REAL, or DOUBLE

♦

WRITEWRF(): Writes the indicated time step for the indicated variable to the current
WRF-netCDF format file (also generic).

♦

CLOSEWRF(): Close/flush the indicated WRF-netCDF format file♦
There are also two related M3Tools programs; these are much more generic (not tied to
specific WRF versions nor CMAQ-variable output) than MCIP:

wrftom3: Convert/extract/window variables from WRF-format netCDF files to
GRIDDED I/O API files

♦

wrfgriddesc: Create a GRIDDESC file from the header-data in a WRF-format
netCDF file.

♦

Back to Contents

Input File Lists:
Easy Processing for Sequences of Files

READ3() and INTERP3() can handle lists of consecutive files, to cover
multi-run/multi-file studies. For example if you have a month-long set of 31 single-day files,
here is how an I/O API based program can process all of them as though they were the single
file FOO

 setenv FOO "LIST:NAME_1,...,NAME_31"
 setenv NAME_1 <path>
 ...
 setenv NAME_31 <path>

I/O API: New Stuff in Versions 3.x

New Module MODMPASFIO and related M3Tools Programs 7

provided that files NAME_1 through NAME_31 have the same grid, variable-sets, and
time-steps.

READ3() and INTERP3() will find the first file in the list containing the indicated
date&time, and read the data from it. Note that this is automatically part of the I/O API, so
that, for example, M3Tools program m3stat can be used to process an entire month's
single-day model data without having to post-process it into a single file. Or the CMAQ
CCTM could do an entire month-long run using a sequence of single-day emissions and
meteorology input files.

Back to Contents

New Fortran-90 Generic Routines

Many of these are what's needed to provide explicit INTERFACEs where arguments may
have been previously single-indexed or not, or to provide for both REAL and REAL8
arguments, etc. Transform routines in MODULE MODGCTP exist in both same-sphere and
sphere-to-sphere forms. In addition to the many generic routines now found in
MODULE M3ATTS and MODULE MODGCTP, the following are now defined in
MODULE M3UTILIO

Note that these generic INTERFACEs require USE M3UTILIO.

SUBROUTINE BILIN():
BILIN11L(), BILIN12L(), BILIN21L(), BILIN22L(),
BILIN11(), BILIN12(), BILIN2L(), BILIN22()

SUBROUTINE BMATVEC():
BMATVEC11(), BMATVEC12(), BMATVEC21(), BMATVEC22(),
BMATVEC01(), BMATVEC02(), BMATVEC021(), BMATVEC022()

LOGICAL FUNCTION ENVLIST():
INTLIST(), REALIST(), DBLLIST(), STRLIST()

<type> FUNCTION ENVGET():
BENVINT(), BENVDBLE(), BENVREAL(), ENVINT(), ENVDBLE(),
ENVREAL(), ENVSTR(), ENVYN()

INTEGER FUNCTION FINDKEY():
FINDC(), FIND1(), FIND2(), FIND3(), FIND4(), FINDL1(),
FINDL2(), FINDL3(), FINDL4(), FINDR1(), FINDR2(),
FINDR3(), FINDR4()

<type> FUNCTION GETVAL():
GETDBLE(), GETDBLE1(), GETMENU(), GETNUM(), GETNUM1(),
GETREAL(), GETREAL1(), GETYN()

INTEGER FUNCTION LOCATE():
LOCAT1(), LOCAT2(), LOCAT3(), LOCAT4(), LOCATC(),
LOCATL1(), LOCATL2(), LOCATL3(), LOCATL4() LOCATR1(),
LOCATR2(), LOCATR3(), LOCATR4()

SUBROUTINE PMATVEC():
PMATVEC11(), PMATVEC12(), PMATVEC21(), PMATVEC22()

SUBROUTINE SORTI():
SORTIC4(), SORTIC8(), SORTINC4(), SORTINC8(), SORTI1(),
SORTI2(), SORTI3(), SORTI4(), SORTL1(), SORTL2(),

I/O API: New Stuff in Versions 3.x

Input File Lists:Easy Processing for Sequences of Files 8

SORTL3(), SORTL4(), SORTR1(),SORTR2(), SORTR3(), SORTR4()
SUBROUTINE UNGRIDB():

UNGRIDBS1(), UNGRIDBS2(), UNGRIDBD1(), UNGRIDBD2()
SUBROUTINE UNGRIDI():

UNGRIDIS1(), UNGRIDIS2(), UNGRIDID1(), UNGRIDID2()

Back to Contents

M3Tools Programs

Date-and-Time Manipulation for Scripting: datshift, greg2jul, jul2greg, juldiff, julshift,
timeshift
These echo the program's result (without any extraneous stuff). Here are some sample uses
(where note that "enclose in back-quotes" means to take the result of the program and use it,
e.g., as the right-hand side of set ... = , and that the :r "root" and :e "extension" operators
take the left and right hand sides of the period in shell-variable values):

 set jdate = `greg2jul today`
 set kdate = `greg2jul 20150103` # converts Jan. 3, 2015 to YYYYDDD format
 set idate = `julshift ${jdate} 7` # Julian date for this day next week
 set days = `juldiff ${kdate} ${jdate}` # is the number of days from 2015003 to today
 timeshift 2014029.120000 183000 # echoes 2014030.063000
 set foo = `timeshift 2014029.120000 183000`
 echo $foo:r # echoes 2014030
 echo $foo:e # echoes 063000
 echo `jul2greg 2015133` # echoes 20150513 (for May 13, 2015)

New M3Tools Programs:
bcwndw, camxtom3, dayagg,
vertimeproc, vertintegral, findwndw, gridprobe, insertgrid, m3mask, m3probe,
m3totxt, wrfgriddesc, wrftom3

OpenMP-Parallel M3Tools Programs:
bcwndw, dayagg, m3agmask, m3agmax, m3combo, m3cple, m3interp, m3mask,
m3tproc, mtxcalc mtxcple, presz, vertimeproc, vertintegral, vertot

Fortran-90 "Free" (.f90) source format:
bcwndw.f90, camxtom3.f90, datshift.f90, dayagg.f90, factor.f90, fakestep.f90,
fills.f90, greg2jul.f90, gregdate.f90, jul2greg.f90, juldate.f90, juldiff.f90, julshift.f90,
latlon.f90, m3combo.f90, m3cple.f90, m3fake.f90, m3mask.f90, m3pair.f90,
m3probe.f90, m3totxt.f90, m3tproc.f90, m3tshift.f90, m3wndw.f90, mtxcalc.f90,
pairstep.f90, presz.f90, timeshift.f90, vertimeproc.f90, vertintegral.f90, vertot.f90

New SAMPLE PROGRAMS page: updated to demonstrate I/O API-3.x capabilities and
MODULEs, .f90 source format and coding.

Removed M3Tools program utmtool for I/O API-3.2(deprecated in I/O API-3.0), in favor
of program projtool which has greatly extended capabilities.

Back to Contents

I/O API: New Stuff in Versions 3.x

New Fortran-90 Generic Routines 9

New SUBROUTINEs and FUNCTIONs

INTERFACE-specific forms:
needed for MODULE M3UTILIO to provide INTERFACEs for multiple
argument-rank cases, as described in the section on Fortran-90 Generics, above.

SUBROUTINE LASTTIME(SDATE,STIME,TSTEP,NRECS, EDATE,ETIME):
I/O API-3.1

computes the last date and time for a time step sequence, robustly avoiding
INTEGER-overflow problems (Limit: NRECS overflows beyond about 68 years with
1-sec timestep, or 8947 years with 1-hour timestep. I've done 33-year runs with no
problems, with I/O API-3.1 codes).

GETNUM1(), GETREAL1(), GETDBLE1():
Have only arguments for DEFAULT and PROMPT, but not LO, HI as in
GETNUM(), GETREAL(), GETDBLE()

BENVINT(), BENVDBLE(), BENVREAL():
accept bounded ranges of inputs: do have LO, HI arguments

M3TOGTPZ(),XY2XY(),GRID2XY(), GRID2INDX(), PNTS2INDX(),
INDXMULT():

in MODULE MODGCTP
FINDL1(), FINDL2(), FINDL3(), FINDL4(), LOCATL1(), LOCATL2(),
LOCATL3(), LOCATL4(), SORTL1(), SORTL2(), SORTL3(), SORTL4():

...for INTEGER*8 key-tuples
SORTINC4(), SORTINC8(): I/O API-3.1

...only the first N characters are significant.
SORTIC8(), SORTINC8():

...use INTEGER*8 table-subscripting, and require compilation for the Medium-64
memory model to be useful (-mcmodel=medium for ifort). [SMOKE-CARB request
where they want to have more than 2G "sources" for program smkreport)

Back to Contents

gfortran hacks

Recent versions of gfortran insist on breaking compatibility with all other compilers we use
(and with earlier versions of gfortran), not accepting command-line-argument routines
IARGC() and GETARG() (which are an industry standard Fortran extension), and accepting
only Fortran-2003 routines GET_COMMAND_ARGUMENT() and
COMMAND_ARGUMENT_COUNT(). This version conditionally implements IARGC() and
GETARG() internally in init3.F, depending upon preprocessor-definition -DNEED_ARGS=1
which is now set in Makeinclude.Linux2_x86, Makeinclude.Linux2_x86gfort,
Makeinclude.Linux2_x86_64, and Makeinclude.Linux2_x86_64gfort. Depending upon
gfortran version, you either need to have it, or need not to have it.

Back to Contents

I/O API: New Stuff in Versions 3.x

New SUBROUTINEs and FUNCTIONs 10

Climatology-Year Versions

You can build the I/O API to use a 360-day or 365-day climatology year, using the following
binary types and Makeinclude files:

Makeinclude.Linux2_x86_64_360
Makeinclude.Linux2_x86_64_365
Makeinclude.Linux2_x86_64gfort_360
Makeinclude.Linux2_x86_64gfort_365
Makeinclude.Linux2_x86_64ifort_360
Makeinclude.Linux2_x86_64ifort_365
Makeinclude.Linux2_x86_64pg_360
Makeinclude.Linux2_x86_64pg_365

Note that you need to keep these builds distinct from the (not-compatible) "normal"
builds.

Back to Contents

Memory-Model Issues

See Notes on Linux2_x86_64 memory models
There are three different memory-models for programs on 64-bit x86_64 Linux machines,
which offer differing degrees of support for huge (>2 GB) arrays and huge object-files. Most
compilers default to the "small" memory model, which suffices for the vast majority of uses.
You can build the I/O API to use the "medium" memory model (at some cost in
performance), using the following binary types and Makeinclude files:

Makeinclude.Linux2_x86_64gfort_medium
Makeinclude.Linux2_x86_64ifort_medium
Makeinclude.Linux2_x86_64pg_medium

Compiler-flags for memory model tend to take one of the following forms:

-mcmodel=small
-mcmodel=medium
-mcmodel=large

For CMAQ, you will need the medium memory model if your full CONC field is larger than 2
GB, i.e., if your grid dimensions are much larger than about
300 rows × 400 columns × 40 layers × 100 species (or equivalent).

Note that you need to build all model-components with the same set of memory-model
flags and to keep these builds distinct from the (not-compatible) "normal" builds.

Back to Contents

I/O API: New Stuff in Versions 3.x

Climatology-Year Versions 11

Other Issues

INTEGER Overflow Issues
Note that time intervals coded HHMMSS will suffer INTEGER-overflow after a little
more than 24.5 years; however, a number of I/O API routines—CURREC(),
CURRSTEP(), JSTEP3(), LASTTIME(), NEXTTIME()—are carefully coded so as
to avoid such overflow, and can be used for time periods as long as several thousand
years.

Programs that use starting date and time and run-duration (formatted YYYYDDD,
HHMMSS, and HHMMSS) as run-control parameters will necessarily have the matching
overflow problems; it is recommended that starting and ending dates and times be
used instead. This latter style is safe for multi-century runs...

Environment variables
...of length up to 64K are now supported internally for I/O API-3.1 and later. Note
that your operating system may well barf over this kind of thing — POSIX only
mandates up to 512 bytes ;-(

GET_ENVLIST()
Why re-invent the wheel? un-safely?
...and repeatedly? (there being 5 different copies of this routine in the CMAQ-5.0.1
source!)
There was already a well-written routine STRLIST() with the same functionality,
except that it did so safely, with bounds-checking: by putting a too-long list into a
CMAQ script, I can crash CMAQ any time I want! This would not be true if it used
the already-written I/O API routines.

CHECKMEM()
Note that this is mostly found in SMOKE-descended codes, and in SMOKE itself...
Versions of this routine prior to the one found in SMOKE-4.0 violate Models-3
standards by suppressing logging of the I/O-status argument, which when non-zero is
is the actual reason for program failure — in one case I know of it cost more than two
person-weeks of debugging a development-version of SMOKE program movesmrg,
before I replaced this routine by one which did report the I/O status, at which point it
took me about ten minutes to re-compile and do a test-run, five more minutes to look
up the failure-status in Intel's web-docs, and then a final ten minutes to find and fix
the problem.

Moreover, CHECKMEM() use both suppresses optimization opportunities and at the
same time makes the code less readable. For example, compare this example taken
from BDSNP_MOD.F (which hides its actual content among a forest of
CHECKMEMs):

 ALLOCATE(SOILM(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'SOILM', PNAME)

 ALLOCATE(SOILMPREV(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'SOILMPREV', PNAME)

 ALLOCATE(SOILT(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'SOILT', PNAME)

 ALLOCATE(ISLTYP(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'ISLTYP', PNAME)

I/O API: New Stuff in Versions 3.x

Other Issues 12

 ALLOCATE(DRYPERIOD(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'PTYPE', PNAME)

 ALLOCATE(NDEPRES(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'PTYPE', PNAME)

 ALLOCATE(NDEPRATE(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'PTYPE', PNAME)

 NDEPRATE = 0.0

 ALLOCATE(PFACTOR(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'PFACTOR', PNAME)

 ALLOCATE(ARID(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'ARID', PNAME)

 ALLOCATE(NONARID(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'NONARID', PNAME)

 ALLOCATE(LANDFRAC(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'LANDFRAC', PNAME)

 ALLOCATE(FERT(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'FERT', PNAME)

 ALLOCATE(T1_NH3(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'T1_NH3', PNAME)

 ALLOCATE(T1_NO3(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'T1_NO3', PNAME)

 ALLOCATE(T1_ON(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'T1_ON', PNAME)

 ALLOCATE(EPICN(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'EPICN', PNAME)

 ALLOCATE(CRF(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'CRF', PNAME)

 ALLOCATE(CRFAVG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'CRF', PNAME)

 ALLOCATE(PULSEAVG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'PULSEAVG', PNAME)

 ALLOCATE(BASESUM(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'BASESUM', PNAME)

C ------ Diagnostics -----------------------------------
 ALLOCATE(THETA_DIAG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'THETA_DIAG', PNAME)

 ALLOCATE(WET_DIAG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'WET_DIAG', PNAME)

 ALLOCATE(TEMP_DIAG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'TEMP_DIAG', PNAME)

 ALLOCATE(A_DIAG(NCOLS,NROWS), STAT=IOS)

I/O API: New Stuff in Versions 3.x

Other Issues 13

 CALL CHECKMEM(IOS, 'A_DIAG(', PNAME)

 ALLOCATE(AFERT_DIAG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'AFERT_DIAG', PNAME)

 ALLOCATE(NRES_FERT_DIAG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'NRES_FERT_DIAG', PNAME)

 ALLOCATE(NRES_DEP_DIAG(NCOLS,NROWS), STAT=IOS)
 CALL CHECKMEM(IOS, 'NRES_DEP_DIAG', PNAME)

with the following equivalent code, which I find much more readable:

 ALLOCATE(SOILM(NCOLS,NROWS),
 & SOILMPREV(NCOLS,NROWS),
 & SOILT(NCOLS,NROWS),
 & ISLTYP(NCOLS,NROWS),
 & DRYPERIOD(NCOLS,NROWS),
 & NDEPRES(NCOLS,NROWS),
 & NDEPRATE(NCOLS,NROWS),
 & PFACTOR(NCOLS,NROWS),
 & ARID(NCOLS,NROWS),
 & NONARID(NCOLS,NROWS),
 & LANDFRAC(NCOLS,NROWS),
 & FERT(NCOLS,NROWS),
 & T1_NH3(NCOLS,NROWS),
 & T1_NO3(NCOLS,NROWS),
 & T1_ON(NCOLS,NROWS),
 & EPICN(NCOLS,NROWS),
 & CRF(NCOLS,NROWS),
 & CRFAVG(NCOLS,NROWS),
 & PULSEAVG(NCOLS,NROWS),
 & BASESUM(NCOLS,NROWS),
 & THETA_DIAG(NCOLS,NROWS), !! diagnostic variables:
 & WET_DIAG(NCOLS,NROWS),
 & TEMP_DIAG(NCOLS,NROWS),
 & A_DIAG(NCOLS,NROWS),
 & AFERT_DIAG(NCOLS,NROWS),
 & NRES_FERT_DIAG(NCOLS,NROWS),
 & NRES_DEP_DIAG(NCOLS,NROWS), STAT=IOS)
 IF (IOS .NE. 0) THEN
 WRITE(MESG, '(A, I9)')
 & 'ERROR allocating SOILM...NRES_DEP_DIAG. STATUS=', IOS
 CALL M3EXIT(PNAME, 0,0, MESG, 2)
 END IF

 NDEPRATE = 0.0

Array-of-TYPE code architecture
If you take nVidia's courses on GPU programming, one of the very first things they
will say (using C-programmer language, struct instead of Fortran-90 TYPE) is:

Many codes can be structured either as array-of-structs or as
struct-of-arrays (or even as parallel arrays). Array-of-structs
code will kill GPU-computing performance.

And actually the same is true for for killing performance on the upcoming Intel PHI
Xeons and, though to a lesser degree, for current cache based microprocessors...

I/O API: New Stuff in Versions 3.x

Other Issues 14

Module names
With a very few exceptions (Absoft, PathScale, Cray), Fortran-90 compiler behavior
for generating MODULE-file names is

Downcase the MODULE-name
Add a trailing .mod

Therefore, if we name MODULE-source files by a similar pair of rules:

One MODULE per source-file
Optionally, name all modules "mod<something>" so that
module-source files are immediately obvious
Downcase the MODULE-name for the base of the source-file name,
and add a trailing .f or .f90, as appropriate.
For example MODULE MODQUX should live in source-file
modqux.f90 or...

then we can put rule based—and correct!— MODULE and precise dependency
handling into Makefiles, and avoid a number of problems caused by the hacks found
in the current systems. Here is an example of some of the rules:

.SUFFIXES: .m4 .c .F .f ..f90 .mod

...
########## Rules:
%.o : %.mod # Disable "gmake"s obnoxious implicit Modula-2 rule !!
%.f : %.F # Hack for some versions of "gmake" + "gfortran"
.f.mod:
 cd ${OBJDIR}; $(FC) -c $(FFLAGS) ${SRCDIR}/$<
.f90.mod:
 cd ${OBJDIR}; $(FC) -c $(FFLAGS) ${SRCDIR}/$<
...
########## Dependencies:

foo.o : modbar.mod m3utilio.mod
...

By way of further example, the Makefile for one of my hydrology models has the
following precise set of MODULE-related dependency rules:

mod_noah.mod mod_noah.o : mod_calibparms.mod
mod_route.mod mod_route.o : mod_noah.mod mod_rteparms.mod mod_calibparms.mod
chanadj.o : mod_rteparms.mod
chaninit.o : mod_rteparms.mod
gis2route.o : mod_rteparms.mod
gridinit.o : mod_route.mod mod_noah.mod mod_rteparms.mod mod_calibparms.mod
mpoolinit.o : mod_rteparms.mod
nldastomet.o : ${LIBDIR}/modgribio.mod
nldasmask.o : ${LIBDIR}/modgribio.mod
qbaseinit.o : mod_noah.mod mod_rteparms.mod mod_calibparms.mod
reflex.o : mod_noah.mod mod_route.mod libnoah_phys.a
...

Back to Contents

I/O API: New Stuff in Versions 3.x

Other Issues 15

To-Do List/Discussion

Just to get things started:

Define standard SMOKE metadata and the interface(s) by which it is provided. Then
finish the relevant routines in MODULE MODATTS3 accordingly.

♦

Add a MODULE that supports routines for GIS-raster-format I/O
(INTEGER*[1,2,4] BIL, GRIDFLOAT, ARC-ASCII, ASC-ASCII, etc., as well
as gzipped forms of the same)?

♦

Tension-spline interpolation module and tools-programs?♦
High-performance production-graphics programs (m3plot, mtxplot, ncfplot,
gisplot)?

♦

M3Tools development—new codes with standardized, overflow-proof (starting
date&time; ending date&time) interfaces, free-format F90, OpenMP-parallel where
reasonable?

♦

Back to Contents

Send comments to Carlie J. Coats, Jr.
cjcoats@email.unc.edu

I/O API: New Stuff in Versions 3.x

To-Do List/Discussion 16

mailto:cjcoats@email.unc.edu
mailto:cjcoats@email.unc.edu

	Table of Contents
	I/O API: New Stuff in Versions 3.x
	Contents / Agenda
	On Github: I/O API-3.2
	MS-Windows support
	CF-compliant geospatial metadata option
	PnetCDF/MPI distributed I/O option
	I/O API Versions 3.2 and 3.2-large
	Snoop-Mode option for read-operations
	New Module MODATTS3
	New Module MODGCTP
	New Module MODNCFIO
	New Module MODMPASFIO and related M3Tools Programs
	New Module MODWRFIO and related M3Tools Programs
	Input File Lists: Easy Processing for Sequences of Files
	New Fortran-90 Generic Routines
	M3Tools Programs
	New SUBROUTINEs and FUNCTIONs
	gfortran hacks
	Climatology-Year Versions
	Memory-Model Issues
	Other Issues
	To-Do List/Discussion

