GCTP
General Cartographic
Transformation Package

Software Documentation
Software Documentation for the General Cartographic Transformation Package

CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General information.</td>
</tr>
<tr>
<td>1.1 Summary</td>
</tr>
<tr>
<td>1.2 Environment</td>
</tr>
<tr>
<td>1.3 References</td>
</tr>
<tr>
<td>2. Package description.</td>
</tr>
<tr>
<td>2.1 System description.</td>
</tr>
<tr>
<td>2.2 Subroutine GTPZ0, primary access routine to the package</td>
</tr>
<tr>
<td>2.3 Function ADJLZ0, adjusts longitude to range -180° to +180°</td>
</tr>
<tr>
<td>2.4 Function ASINZ0, checks arc sin argument before calling DASIN</td>
</tr>
<tr>
<td>2.5 Function DMSPZ0, converts an angle to +DDDMMSSSS.SSS format</td>
</tr>
<tr>
<td>2.6 Function E0FNZ0, computes constant "e₀" for distance along meridian</td>
</tr>
<tr>
<td>2.7 Function E1FNZ0, computes constant "e₁" for distance along meridian</td>
</tr>
<tr>
<td>2.8 Function E2FNZ0, computes constant "e₂" for distance along meridian</td>
</tr>
<tr>
<td>2.9 Function E3FNZ0, computes constant "e₃" for distance along meridian</td>
</tr>
<tr>
<td>2.10 Function E4FNZ0, computes constant "e₄" for Polar Stereographic</td>
</tr>
<tr>
<td>2.11 Function MLFNZ0, computes "M," distance Equator to PHI</td>
</tr>
<tr>
<td>2.12 Function MSFNZ0, computes "m," radius of parallel of latitude divided by semimajor axis</td>
</tr>
<tr>
<td>2.13 Function PAKCZ0, converts +DDDMMSSSS.SSS to +DDDMMSSSS.SSS</td>
</tr>
<tr>
<td>2.14 Function PAKDZ0, converts +DDDMMSSSS.SSS to degrees, minutes, seconds</td>
</tr>
<tr>
<td>2.15 Function PAKRZ0, converts +DDDMMSSSS.SSS angle format to radians</td>
</tr>
<tr>
<td>2.16 Function PAKSZ0, converts +DDDMMSSSS.SSS angle format to seconds</td>
</tr>
<tr>
<td>2.17 Function PHI1Z0, computes latitude in inverse of Albers Equal-Area Conic and Polar Stereographic</td>
</tr>
<tr>
<td>2.18 Function PHI2Z0, computes latitude in inverses in Lambert Conformal</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>2.19</td>
</tr>
<tr>
<td>2.20</td>
</tr>
<tr>
<td>2.21</td>
</tr>
<tr>
<td>2.22</td>
</tr>
<tr>
<td>2.23</td>
</tr>
<tr>
<td>2.24</td>
</tr>
<tr>
<td>2.25</td>
</tr>
<tr>
<td>2.26</td>
</tr>
<tr>
<td>2.27</td>
</tr>
<tr>
<td>2.28</td>
</tr>
<tr>
<td>2.29</td>
</tr>
<tr>
<td>2.30</td>
</tr>
<tr>
<td>2.31</td>
</tr>
<tr>
<td>2.32</td>
</tr>
<tr>
<td>2.33</td>
</tr>
<tr>
<td>2.34</td>
</tr>
<tr>
<td>2.35</td>
</tr>
<tr>
<td>2.36</td>
</tr>
<tr>
<td>2.37</td>
</tr>
<tr>
<td>2.38</td>
</tr>
<tr>
<td>2.39</td>
</tr>
<tr>
<td>2.40</td>
</tr>
<tr>
<td>2.41</td>
</tr>
<tr>
<td>2.42</td>
</tr>
<tr>
<td>2.43</td>
</tr>
<tr>
<td>2.44</td>
</tr>
<tr>
<td>2.45</td>
</tr>
<tr>
<td>2.46</td>
</tr>
<tr>
<td>2.47</td>
</tr>
<tr>
<td>2.48</td>
</tr>
</tbody>
</table>
Software Documentation for the General Cartographic Transformation Package

Page

2.49 Subroutine SPHDZ0, selects spheroid and computes spheroid constants. 62
2.50 Function TSFNZ0, computes "t" for forward in the Lambert Conformal Conic and Polar Stereographic. 64
2.51 Subroutine UNTFZ0, determines conversion factor between two types of units (U.S. feet, meters, radians, seconds, degrees, International feet). 65

3. Operating environment. 66
 3.1 Hardware. ... 66
 3.2 Support software. 66
 3.3 Data base .. 67

4. Maintenance procedures 68
 4.1 Programming conventions 68
 4.2 Verification procedures 68
 4.3 Error correction procedures 68
 4.4 Special maintenance procedures 68
 4.5 Listing and charts. 68
 4.6 Point of contact. 69
 4.7 Discrepancy reports 69

Discrepancy Report form. 70
Appendix A - State Plane Coordinate Systems. 73
Appendix B - UTM zone locations and central meridians. 78
Appendix C - Parameters required for definition of map projections 79
Software Documentation for the General Cartographic Transformation Package

LIST OF PAGES

A complete and current copy of the Software Documentation for the General Cartographic Transformation Package consists of the pages (and most recent creation or revision dates) listed below.

<table>
<thead>
<tr>
<th>Page</th>
<th>Date</th>
<th>Page</th>
<th>Date</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii</td>
<td>09/90</td>
<td>34</td>
<td>09/90</td>
<td>72</td>
<td>09/90</td>
</tr>
<tr>
<td>iii</td>
<td>09/90</td>
<td>35</td>
<td>09/90</td>
<td>73</td>
<td>09/90</td>
</tr>
<tr>
<td>iv</td>
<td>09/90</td>
<td>36</td>
<td>09/90</td>
<td>74</td>
<td>09/90</td>
</tr>
<tr>
<td>v</td>
<td>10/94</td>
<td>37</td>
<td>09/90</td>
<td>75</td>
<td>09/90</td>
</tr>
<tr>
<td>1</td>
<td>09/90</td>
<td>38</td>
<td>09/90</td>
<td>76</td>
<td>09/90</td>
</tr>
<tr>
<td>2</td>
<td>09/90</td>
<td>39</td>
<td>09/90</td>
<td>77</td>
<td>09/90</td>
</tr>
<tr>
<td>3</td>
<td>12/91</td>
<td>40</td>
<td>09/90</td>
<td>78</td>
<td>09/90</td>
</tr>
<tr>
<td>4</td>
<td>08/94</td>
<td>41</td>
<td>09/90</td>
<td>79</td>
<td>09/90</td>
</tr>
<tr>
<td>5</td>
<td>09/90</td>
<td>42</td>
<td>09/90</td>
<td>80</td>
<td>09/90</td>
</tr>
<tr>
<td>6</td>
<td>12/91</td>
<td>43</td>
<td>09/90</td>
<td>81</td>
<td>09/90</td>
</tr>
<tr>
<td>6a</td>
<td>12/91</td>
<td>44</td>
<td>09/90</td>
<td>82</td>
<td>09/90</td>
</tr>
<tr>
<td>7</td>
<td>09/90</td>
<td>45</td>
<td>09/90</td>
<td>83</td>
<td>09/90</td>
</tr>
<tr>
<td>8</td>
<td>09/90</td>
<td>46</td>
<td>09/90</td>
<td>84</td>
<td>09/90</td>
</tr>
<tr>
<td>9</td>
<td>10/94</td>
<td>47</td>
<td>09/90</td>
<td>85</td>
<td>09/90</td>
</tr>
<tr>
<td>10</td>
<td>09/90</td>
<td>48</td>
<td>09/90</td>
<td>86</td>
<td>09/90</td>
</tr>
<tr>
<td>11</td>
<td>09/90</td>
<td>49</td>
<td>09/90</td>
<td>87</td>
<td>09/90</td>
</tr>
<tr>
<td>12</td>
<td>09/90</td>
<td>50</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>09/90</td>
<td>51</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>09/90</td>
<td>52</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>09/90</td>
<td>53</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>09/90</td>
<td>54</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>09/90</td>
<td>55</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>09/90</td>
<td>56</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>09/90</td>
<td>57</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>09/90</td>
<td>58</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>09/90</td>
<td>59</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>12/91</td>
<td>60</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>09/90</td>
<td>61</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>09/90</td>
<td>62</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>09/90</td>
<td>63</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>09/90</td>
<td>64</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>09/90</td>
<td>65</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>09/90</td>
<td>66</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>09/90</td>
<td>67</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>09/90</td>
<td>68</td>
<td>09/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>08/94</td>
<td>69</td>
<td>08/94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>09/90</td>
<td>70</td>
<td>08/94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>09/90</td>
<td>71</td>
<td>08/94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10/94 (Change 3)
1. GENERAL INFORMATION

1.1 SUMMARY
The General Cartographic Transformation Package (GCTP) is a system of computer subroutines, written in FORTRAN, designed to permit the transformation of coordinate pairs from one map projection to another. GCTP should not be used to transform coordinates between spheroids, because a datum shift should be applied to the geographic coordinates in most cases. It is a subroutine package that must be linked to and called by other FORTRAN programs. The GCTP is the standard computer software used by the National Mapping Division for map projection computations. The mathematical algorithms used in GCTP meet the accuracy specifications of USGS Circular 878-B, "Representation of Geographic Point Locations for Information Interchange," which has been proposed as Federal Information Processing Standards Publication 70-1. This software is approved for use with all products of the National Mapping Program.

1.2 ENVIRONMENT
The GCTP subroutines are generally used as object modules, which are linked to application programs. The software is presently used in the Digital Line Graph Production System (PROSYS), the Cartographic Automated Mapping (USGS CAM1 or K971) system, L176 Batch General Map Transformation, L177 Interactive General Map Transformation, J898 General Map Transformation Driver, and the Universal Projection Plotting System (UPPS).

1.3 REFERENCES

Software Documentation for the General Cartographic Transformation Package

2. PACKAGE DESCRIPTION

2.1 SYSTEM DESCRIPTION

The package allows conversion of a coordinate pair in one projection to another projection, or linear or angular unit conversion of a coordinate pair within one system. Appendix A provides information for State Plane Coordinate System zone codes, appendix B for Universal Transverse Mercator zone coverages, and appendix C for descriptions of the parameters necessary for the projections.

2.1.1 Program and Solution Method

The mathematical algorithms employed are listed in USGS Professional Paper 1395, except for the Robinson projection which is documented in USGS Professional Paper 1453 (see references, section 1.3).

2.1.2 Input

All input to the package is handled through subroutine GTPZ0. Input includes coordinates, projection system code, zone code, projection parameters, units code, and spheroid code, and desired output projection code, zone code, projection parameters, and units code.

2.1.3 Processing

The individual subroutines and functions are described in sections 2.2 through 2.51.

2.1.4 Output

All output for error-free computations is passed through variables in the call line for subroutine GTPZ0. The output is the desired coordinates. When errors occur, a non-zero code is returned to the calling routine and an error message is output to the logical unit specified for variable LEMSG.
2.1.5 Interfaces
The package is included in the application program at link-edit time into the load module (on the Amdahl) or the executable module at link time on other computers. The office listed below should be contacted for the proper data set name and linkage procedures.

U.S. Geological Survey
National Mapping Division
Office of Production Operations
Branch of Operations Policy
National Center Mail Stop 510
Reston, Virginia 22092

2.1.6 Run Description
The primary access to the package is through a call to subroutine GTPZ0. Section 2.2 describes the required variables to be passed to the routine and to be received back to the calling program. The rest of the subprograms for the package are described in sections 2.3 through 2.51.

The standard FORTRAN naming conventions are followed in this documentation. All real or floating-point variables are REAL*4 or REAL*8. All integers are INTEGER*2 or INTEGER*4.
Software Documentation for the General Cartographic Transformation Package

2.2 SUBROUTINE GTPZ0

2.2.1 Summary
Subroutine GTPZ0 is the primary access routine to the GCTP. "Driver" or main programs would normally call the package through this routine. The use of constants in the call line is not recommended as some of the variables are changed.

2.2.2 Call Line
The call is as follows:

```fortran
CALL GTPZ0(CRDIN,INSYS,INZONE,TPARIN,INUNIT,INSPH,IPR,JPR,LEMSG,
X LPARM,CRDIO,IOSYS,IOZONE,TPARIO,IOUNIT,LN27,LN83,FN27,FN83,
X LENGTH,IFLG)
```

(1) CRDIN is the REAL*8 array of two input coordinates (X-Y, longitude-latitude, etc.). The nature of the coordinates is defined by INSYS, INZONE, and INUNIT. The east-west dimension (X, longitude, easting) is first, followed by the north-south (Y, latitude, northing)

Sign conventions: Latitude--North is plus, south is minus
 Longitude--East is plus, west is minus
(2) INSYS is the INTEGER*4 input projection system code:

0 = Geographic (default) 1 = Universal Transverse Mercator
2 = State Plane Coordinates 3 = Albers Conical Equal-Area
4 = Lambert Conformal Conic 5 = Mercator
6 = Polar Stereographic 7 = Polyconic
8 = Equidistant Conic 9 = Transverse Mercator
10 = Stereographic 11 = Lambert Azimuthal Equal-Area
12 = Azimuthal Equidistant 13 = Gnomonic
14 = Orthographic 15 = General Vertical Near-Side Perspective
16 = Sinusoidal 17 = Equirectangular
18 = Miller Cylindrical 19 = Van der Grinten
20 = Oblique Mercator 21 = Robinson
22 = Space Oblique Mercator 23 = Modified Stereographic Conformal
 (Alaska)

(3) INZONE is the INTEGER*4 input zone code number for the Universal Transverse Mercator (UTM) when INSYS=1, and for the State Plane Coordinates System when INSYS=2. See appendix A for the State Plane zone codes and appendix B for the coverage of the UTM zones. For the UTM in the Southern Hemisphere, INZONE must be negative. When INSYS=0, INZONE is not relevant for Geographic coordinates.

The initialization of the projection will always take place during the first call to the corresponding projection routine. Subsequent calls will result in the recomputation of the initialization parameters if the zone number is non-zero and is different from the zone number used in the preceding call. If the zone number is identical to the preceding call, that previous initialization will be used.

When INSYS is greater than 2, the use of a non-zero INZONE associates that number with the set of parameters that is input. If the INZONE value remains unchanged with subsequent

12/91 (Change 1)
calls, the parameters are reused (the same zone definition is used) without reinitialization of the projection.
TPARIN is a REAL*8 array of 15 input projection parameters. If INSYS is greater than 2, this array must be provided by the calling program. See the individual projection subroutines for the definition of the required items. All longitudes and latitudes in the parameter array are assumed to be in the standard packed DMS format (+DDDMMSS.SSS). Function PAKCZ0 must be used to convert the alternate packed DMS format (+DDDMSS.SSS) to the standard packed DMS format for all angular elements in the parameter array before subroutine GTPZ0 is called. If the eccentricity is zero, a sphere of radius A is assumed.

INUNIT is the INTEGER*4 input units code for the values in array CRDIN:

<table>
<thead>
<tr>
<th>Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>radians (default)</td>
</tr>
<tr>
<td>1</td>
<td>U.S. feet</td>
</tr>
<tr>
<td>2</td>
<td>meters</td>
</tr>
<tr>
<td>3</td>
<td>seconds of arc</td>
</tr>
<tr>
<td>4</td>
<td>degrees of arc</td>
</tr>
<tr>
<td>5</td>
<td>International ft.</td>
</tr>
<tr>
<td>6</td>
<td>table supplying the unit code, which is legislated for the State zone selected</td>
</tr>
</tbody>
</table>

INSPH is the INTEGER*4 input-output spheroid code from the following list:

<table>
<thead>
<tr>
<th>Code</th>
<th>Spheroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Clarke 1866</td>
</tr>
<tr>
<td>1</td>
<td>Clarke 1880</td>
</tr>
<tr>
<td>2</td>
<td>Bessel</td>
</tr>
<tr>
<td>3</td>
<td>New International 1967</td>
</tr>
<tr>
<td>4</td>
<td>International 1909</td>
</tr>
<tr>
<td>5</td>
<td>WGS 72</td>
</tr>
<tr>
<td>6</td>
<td>Everest</td>
</tr>
<tr>
<td>7</td>
<td>WGS 66</td>
</tr>
<tr>
<td>8</td>
<td>GRS 1980</td>
</tr>
<tr>
<td>9</td>
<td>Airy</td>
</tr>
<tr>
<td>10</td>
<td>Modified Everest</td>
</tr>
<tr>
<td>11</td>
<td>Modified Airy</td>
</tr>
<tr>
<td>12</td>
<td>WGS 84</td>
</tr>
<tr>
<td>13</td>
<td>Southeast Asia</td>
</tr>
<tr>
<td>14</td>
<td>Australian National</td>
</tr>
<tr>
<td>15</td>
<td>Krassovsky</td>
</tr>
<tr>
<td>16</td>
<td>Hough</td>
</tr>
<tr>
<td>17</td>
<td>Mercury 1960</td>
</tr>
<tr>
<td>18</td>
<td>Modified Mercury 1968</td>
</tr>
<tr>
<td>19</td>
<td>Normal Sphere</td>
</tr>
</tbody>
</table>

If the user wishes to supply constants for a spheroid other than those above, a negative INSPH value must be used, and the
semimajor axis and semiminor axis or eccentricity squared must be supplied in TPARIN and TPARIO.

(7) IPR is the INTEGER*4 printout flag for printing error messages. If IPR is zero, error messages will be printed on logical unit LEMSG. If IPR is not zero, error messages will not be printed.

(8) JPR is the INTEGER*4 printout flag for printing projection parameters. If JPR is zero, projection parameters will be printed on logical unit LPARM. If JPR is not zero, projection parameters will not be printed.

(9) LEMSG is the INTEGER*4 logical unit number where error messages will be printed.

(10) LPARM is the INTEGER*4 logical unit number where projection parameters will be printed.

(11) CRDIO is the REAL*8 output array of the transformed coordinates. See CRDIN for explanation.

(12) IOSYS is the INTEGER*4 output projection system code. See INSYS.

(13) IOZONE is the INTEGER*4 output zone number. See INZONE.

(14) TPARIO is the REAL*8 array of 15 parameters for the output projection. This array must be supplied by the calling program if IOSYS is not 1 or 2, or if INSPH is negative. See TPARIN for explanation.

(15) IOUNIT is the INTEGER*4 output units code. See INUNIT.
(16) LN27 is the INTEGER*4 logical unit number of the direct access file where the NAD 1927 State Plane zone parameters are located.

(17) LN83 is the INTEGER*4 logical unit number of the direct access file where the NAD 1983 State Plane zone parameters are located.

(18) FN27 is the CHARACTER*128 file name of the direct access file containing the NAD 1927 State Plane zone parameters. FN27 may be up to 128 characters long.

(19) FN83 is the CHARACTER*128 file name of the direct access file containing the NAD 1983 State Plane zone parameters. FN83 may be up to 128 characters long.

(20) LENGTH is the INTEGER*4 record length of direct access files FN27 and FN83. For the Amdahl, Concurrent, and Gould computers, LENGTH is 108 bytes. For VAX computers, LENGTH is 27 words.

(21) IFLG is the INTEGER*4 error flag after the transformation:

0 = No errors 1 = INSYS is illegal
2 = IOSYS is illegal 3 = INUNIT is illegal
4 = IOUNIT is illegal 5 = INSYS and INUNIT inconsistent
6 = IOSYS and IOUNIT inconsistent
7 = INZONE is illegal
8 = IOZONE is illegal
11 = INUNIT or IOUNIT is illegal 12 = INUNIT and IOUNIT are inconsistent

For higher numbers, the error flag has been set by one of the projection subroutines.
2.2.3 Algorithm

(1) Checks the validity of the codes:
 INSYS within the range 0 to 23
 IOSYS within the range 0 to 23
 INUNIT within the range 0 to 6
 IOUNIT within the range 0 to 6

(2) Checks the validity of the units by calling UNTFZ0.

(3) Quick return with a units change only if INSYS=IOSYS with INZONE=IOZONE.

(4) If INSYS is geographic (= 0), perform FORWARD computation; otherwise do INVERSE for projection selected (01 through 23).

(5) For each projection, use initialization subroutine PJINIT first, then use subroutine PJXXZ0 to transform the coordinates (XX is 01 through 23).

(6) Return to the calling program.

2.2.4 Error Messages

See IFLG under the call line description (item 21, section 2.2.2). The error flag IFLG is set to 0 if the computation was successful with no errors, or non-zero if there was an error. The calling program must provide the display of the error code, any appropriate message, or other response to the error.

2.2.5 Size

Approximate number of source statements (excluding comments): 257
Approximate size of object code in bytes (Amdahl): 11,224
2.3 FUNCTION ADJLZ0
DOUBLE PRECISION FUNCTION ADJLZ0(LON)

2.3.1 Summary
This function adjusts angle LON, a longitude angle, so the magnitude of the absolute value is less than PI radians (180°). All values are REAL*8.

2.3.2 Algorithm
Two times PI is subtracted (if longitude LON is positive) or added (if LON is negative) from or to LON until the value is not greater than PI radians and less than -PI radians.

2.3.3 Error Messages
None

2.3.4 Size
Approximate number of source statements (excluding comments): 9
Approximate size of object code in bytes (Amdahl): 756
2.4 FUNCTION ASINZ0
DOUBLE PRECISION FUNCTION ASINZ0(CON)

2.4.1 Summary
This function adjusts round-off errors before the arc sine function DASIN is called. Some computers cannot compute the arc sine if the absolute value of the argument is the slightest bit larger than one. All values are REAL*8.

2.4.2 Algorithm
After CON is tested and the absolute of CON is assured to be no greater than one, the arc sine function DASIN is called with the possibly revised value of CON as the argument.

2.4.3 Error Messages
None

2.4.4 Size
Approximate number of source statements (excluding comments): 9
Approximate size of object code in bytes (Amdahl): 712
2.5 FUNCTION DMSPZ0
DOUBLE PRECISION FUNCTION DMSPZ0(SGNA,DEGS,MINS,SECS)

2.5.1 Summary
This function converts an angle in degrees, minutes, and seconds to packed DMS format ±DDDMMSSS.SSS.

2.5.2 Algorithm
SGNA is the sign that is either blank (for positive) or a minus sign set by NEG, which is initialized by DATA NEG'/-'/, and is stored as CHARACTER*1.
DEGS is the degrees value stored as INTEGER*4.
MINS is the minutes value stored as INTEGER*4.
SECS is the seconds value stored as a REAL*4.
The packed DMS format is built as:
 degrees * 1000000 + minutes * 1000 + seconds

Example: +50 degrees, 30 minutes, 36.25 seconds becomes
 DMSPZ0 = 50030036.25 stored as a REAL*8 variable.

2.5.3 Error Messages
None

2.5.4 Size
Approximate number of source statements (excluding comments): 12
Approximate size of object code in bytes (Amdahl): 1,004
2.6 FUNCTION E0FNZ0
DOUBLE PRECISION FUNCTION E0FNZ0(ESQ)

2.6.1 Summary
This function computes the constant "e_0" from the eccentricity squared ESQ. "e_0" is used in a series for calculating the distance along a meridian. All variables are REAL*8.

2.6.2 Algorithm
\[
e_0 = 1 - \frac{ESQ}{4} \left(1 + \frac{ESQ}{16} \left(3 + \frac{5 \times ESQ}{4} \right) \right)
\]

2.6.3 Error Messages
None

2.6.4 Size
Approximate number of source statements (excluding comments): 6
Approximate size of object code in bytes (Amdahl): 784
2.7 FUNCTION E1FNZ0
DOUBLE PRECISION FUNCTION E1FNZ0(ESQ)

2.7.1 Summary
This function computes the constant \(e_1\) from input of the eccentricity squared ESQ. \(e_1\) is used in a series to calculate a distance along a meridian. All variables are REAL*8.

2.7.2 Algorithm
\[
e_1 = \frac{3 \times \text{ESQ}}{8} \left(1 + \frac{\text{ESQ}}{4} \left(1 + \frac{15 \times \text{ESQ}}{32} \right) \right)
\]

2.7.3 Error Messages
None

2.7.4 Size
Approximate number of source statements (excluding comments): 7
Approximate size of object code in bytes (Amdahl): 752
2.8 FUNCTION E2FNZ0
DOUBLE PRECISION FUNCTION E2FNZ0(ESQ)

2.8.1 Summary
This function computes the constant \(e_2\) from input of the eccentricity squared ESQ. \(e_2\) is used in a series to calculate a distance along a meridian. All variables are REAL*8.

2.8.2 Algorithm
\[
e_2 = \frac{15}{256} \cdot ESQ^2 \cdot \left(1 + \frac{3 \cdot ESQ}{4}\right)
\]

2.8.3 Error Messages
None

2.8.4 Size
Approximate number of source statements (excluding comments): 7
Approximate size of object code in bytes (Amdahl): 700
2.9 FUNCTION E3FNZ0
DOUBLE PRECISION FUNCTION E3FNZ0(ESQ)

2.9.1 Summary
This function computes the constant \(e_3\) from input of the eccentricity squared ESQ. \(e_3\) is used in a series to calculate a distance along a meridian. All variables are REAL*8.

2.9.3 Algorithm
\[e_3 = ESQ^3 \times \left(\frac{35}{3072} \right) \]

2.9.3 Error Messages
None

2.9.4 Size
Approximate number of source statements (excluding comments): 5
Approximate size of object code in bytes (Amdahl): 596
2.10 FUNCTION E4FNZ0
DOUBLE PRECISION FUNCTION E4FNZ0(ECC)

2.10.1 Summary
This function computes constant "e_4" from input of the eccentricity of the spheroid ECC. This constant is used in the Polar Stereographic projection. All variables are REAL*8.

2.10.2 Algorithm
\[e_4 = \sqrt{\left(1 + ECC\right)^{1+ECC} \times \left(1 - ECC\right)^{1-ECC}} \]

2.10.3 Error Messages
None

2.10.4 Size
Approximate number of source statements (excluding comments): 8
Approximate size of object code in bytes (Amdahl): 776
2.11 FUNCTION MLFNZ0
DOUBLE PRECISION FUNCTION MLFNZ0(E0,E1,E2,E3,PHI)

2.11.1 Summary
This function computes the value of "M," which is the distance along a meridian from the Equator to latitude PHI. All variables are REAL*8. PHI is the latitude; E0, E1, E2, and E3 are constants as computed by functions E0FNZ0, E1FNZ0, E2FNZ0, and E3FNZ0, respectively.

2.11.2 Algorithm
\[
M = e_0 \times PHI - e_1 \times \sin(2 \times PHI) + e_2 \times \sin(4 \times PHI) - e_3 \times \sin(6 \times PHI)
\]

2.11.3 Error Messages
None

2.11.4 Size
Approximate number of source statements (excluding comments): 6
Approximate size of object code in bytes (Amdahl): 952
FUNCTION MSFNZ0
DOUBLE PRECISION FUNCTION MSFNZ0(ECC,SINPHI,COSPHI)

2.12.1 Summary
This function computes the constant "m," which is the radius of a parallel of latitude PHI divided by the semimajor axis. All variables are REAL*8.

2.12.2 Algorithm
\[m = \frac{\text{COS}(\text{PHI})}{(1 - \text{ECC}^2 \times \text{SIN}^2(\text{PHI}))^{1/2}} \]

2.12.3 Error Messages
None

2.12.4 Size
Approximate number of source statements (excluding comments): 7
Approximate size of object code in bytes (Amdahl): 768
FUNCTION PAKCZ0
DOUBLE PRECISION FUNCTION PAKCZ0(PAK)

2.13.1 Summary
This function converts an angle PAK in alternate packed DMS format +DDDMMSS.SSS to standard packed DMS format +DDDMMSSS.SSS. PAK is REAL*8.

2.13.2 Algorithm
Angle PAK is portioned into four variables: sign SGNA, degrees DEGS, minutes MINS, and seconds SECS in the same manner as function PAKDZ0.

SGNA is stored as CHARACTER*1.
DEGS is stored as INTEGER*4.
MINS is stored as INTEGER*4.
SECS is stored as REAL*8.

The output angle PAKCZ0 in standard packed DMS format is:
degrees * 1000000 + minutes * 1000 + seconds

Example: PAK = 503036.25 yields
SGNA = ' '
DEGS = 50
MINS = 30
SECS = 36.25
PAKCZ0 = 50030036.25

2.13.3 Error Messages
None

2.13.4 Size
Approximate number of source statements (excluding comments): 19
Approximate size of object code in bytes (Amdahl): 1,284
2.14 SUBROUTINE PAKDZ0

SUBROUTINE PAKDZ0(PAK, SGNA, DEGS, MINS, SECS)

2.14.1 Summary
This subroutine converts an angle PAK in standard packed DMS format to degrees, minutes, and seconds. PAK is REAL*8.

2.14.2 Algorithm
Angle PAK is portioned into sign, degrees, minutes, and seconds as follows:

- SGNA is the sign as either blank (for positive) or a minus sign (for negative), stored as CHARACTER*1.
- DEGS is the degrees stored as INTEGER*4.
- MINS is the minutes stored as INTEGER*4.
- SECS is the seconds stored as a REAL*4.

The standard packed DMS format is:

degrees * 1000000 + minutes * 100 + seconds

Example: PAK = 50030036.25 yields
SGNA = ‘ ’
DEGS = 50
MINS = 30
SECS = 36.25

2.14.3 Error Messages
None

2.14.4 Size
Approximate number of source statements (excluding comments): 16
Approximate size of object code in bytes (Amdahl): 1,140
2.15 FUNCTION PAKRZ0

DOUBLE PRECISION FUNCTION PAKRZ0(ANG)

2.15.1 Summary
This function converts a packed DMS angle ANG to radians. All variables are REAL*8.

2.15.2 Algorithm
Function PAKSZ0 is called to convert ANG from packed DMS to seconds of arc.

\[PAKRZ0 = ANG \times 0.484813681095359 \times 10^{-5} \]

converts seconds to radians.

2.15.3 Error Messages
None

2.15.4 Size
Approximate number of source statements (excluding comments): 7
Approximate size of object code in bytes (Amdahl): 680
2.16 FUNCTION PAKSZ0
DOUBLE PRECISION FUNCTION PAKSZ0(ANG)

2.16.1 Summary
This function converts a packed DMS angle ANG to seconds. All variables are REAL*8. See sections 2.5 and 2.14 for definition of packed DMS.

2.16.2 Algorithm
(1) The absolute value of the angle is used.
(2) The degrees are separated out:
 DEGS = ANG/1000000 (fractional portion truncated)
(3) The minutes are separated out:
 MINS = (ANG - DEGS * 1000000) / 1000
 (fractional portion truncated)
(4) The seconds are then computed:
 SECS = ANG - DEGS * 1000000 - MINS * 1000
(5) The total angle in seconds is computed:
 PAKSZ0 = DEGS * 3600.0 + MINS * 60.0 + SECS
(6) The sign is of PAKSZ0 set to that of the input angle.

2.16.3 Error Messages
"ILLEGAL DMS FIELD = . . ." is printed if DEGS exceed 360, MINS exceed 60, or SECS exceed 60.

2.16.4 Size
Approximate number of source statements (excluding comments): 31
Approximate size of object code in bytes (Amdahl): 1,576
2.17 FUNCTION PHI1Z0
DOUBLE PRECISION FUNCTION PHI1Z0(ECC,QS)

2.17.1 Summary
Through an iterative procedure, this function computes the latitude angle PHI1. PHI1 is the equivalent of the latitude PHI for the inverse of the Albers Conical Equal-Area projection. QS is the input angle in radians as computed by QSFNZ0. ECC is the eccentricity. All values are REAL*8 and all angular values are in radians.

2.17.2 Algorithm
(1) The starting value is set: PHI = SIN⁻¹(QS/2)
(2) If ECC is less than 10⁻⁷, the starting value is returned.
(3) ESQ = ECC * ECC to compute the eccentricity squared.
(4) DPHI is computed:
\[DPHI = \frac{(1 - ESQ \cdot \sin²(PHI))^2}{2 \cdot \cos(PHI)} \times \left[\frac{QS}{1 - ESQ} - \frac{\sin(PHI)}{1 - ESQ \cdot \sin²(PHI)} \right] \\
+ \frac{1}{2 \cdot ECC} \cdot \ln \left(\frac{1 - ECC \cdot \sin(PHI)}{1 + ECC \cdot \sin(PHI)} \right) \]
(5) PHI = PHI + DPHI
(6) If DPHI is not less then 10⁻¹⁰, steps 4 and 5 are repeated up to 15 times.

2.17.3 Error Messages
LATITUDE FAILED TO CONVERGE AFTER "n" ITERATIONS
ECCENTRICITY = . . . QS = . . .

2.17.4 Size
Approximate number of source statements (excluding comments): 28
Approximate size of object code in bytes (Amdahl): 1,840
Software Documentation for the General Cartographic Transformation Package

2.18 FUNCTION PHI2Z0
DOUBLE PRECISION FUNCTION PHI2Z0(ECC,TS)

2.18.1 Summary
The latitude PHI2 is computed using an iterative procedure. PHI2 is PHI for the inverse of the Lambert Conformal Conic and Polar Stereographic projections. ECC is the spheroid eccentricity; TS is the constant "t" as computed by TSFNZ0. All real variables are REAL*8.

2.18.2 Algorithm
(1) A starting PHI is computed:

\[\text{PHI} = \frac{\pi}{2} - 2 \cdot \tan^{-1}(\text{TS}) \]

(2) \[\text{DPHI} = \frac{\pi}{2} - 2 \cdot \tan^{-1}(\text{TS} \cdot \left(\frac{1 - \text{ECC} \cdot \sin(\text{PHI})}{1 + \text{ECC} \cdot \sin(\text{PHI})}\right)^{\text{ECC/2}}} - \text{PHI} \]

(3) \[\text{PHI} = \text{PHI} + \text{DPHI} \]

(4) If DPHI is not less than 10^{-10}, repeat steps 2 and 3 up to 15 times.

2.18.3 Error Messages
LATITUDE FAILED TO CONVERGE AFTER "n" ITERATIONS
ECCENTRICITY = . . . TS = . . .

2.18.4 Size
Approximate number of source statements (excluding comments): 25
Approximate size of object code in bytes (Amdahl): 1,660
FUNCTION PHI3Z0
DOUBLE PRECISION FUNCTION PHI3Z0(ML,E0,E1,E2,E3)

2.19.1 Summary
This function computes PHI3 using an iterative process. PHI3 is the latitude PHI for the inverse of the Equidistant Conic projection. All variables are REAL*8.
ML = Constant computed by MLFNZ0.
E0 = Constant computed by E0FNZ0.
E1 = Constant computed by E1FNZ0.
E2 = Constant computed by E2FNZ0.
E3 = Constant computed by E3FNZ0.

2.19.2 Algorithm
(1) The starting PHI is set to equal ML.
(2) \(\text{DPHI} = \frac{ML+E1+\sin(2*PHI)-E2*\sin(4*PHI)+E3*\sin(6*PHI)}{E0} - PHI \)
(3) PHI = PHI + DPHI
(4) If DPHI is not less than \(10^{-10} \), repeat steps 2 and 3 up to 15 times.

2.19.3 Error Messages
LATITUDE FAILED TO CONVERGE AFTER "n" ITERATIONS
ML = . . . E0 = . . .

2.19.4 Size
Approximate number of source statements (excluding comments): 21
Approximate size of object code in bytes (Amdahl): 1,652
2.20 SUBROUTINE PHI4Z0
SUBROUTINE PHI4Z0(ESQ,E0,E1,E2,E3,A,B,C,PHI)

2.20.1 Summary
Through an iterative process, this subroutine computes the latitude PHI for the inverse of the Polyconic projection. All real variables are REAL*8.

ESQ = The spheroid eccentricity squared.
E0 = From E0FNZ0
E1 = From E1FNZ0
E2 = From E2FNZ0
E3 = From E3FNZ0
A = Constant transmitted to the function.
B = Constant transmitted to the function.
C = Constant developed in the function and transmitted back to the calling routine.

2.20.2 Algorithm
(1) The starting value is set PHI = A
(2) C = TAN(PHI) * (1 - ESQ * SIN^2(PHI))^{1/2}
(3) ML = E0 * PHI - E1 * SIN(2 * PHI) + E2 * SIN(4 * PHI)
 - E3 * SIN(6 * PHI)
(4) MLP = E0 - 2 * E1 * COS(2 * PHI) + 4 * E2 * COS(4 * PHI)
 - 6 * E3 * COS(6 * PHI)
(5) CON1 = 2 * ML + C * (ML^2 + B) - 2 * A * (C * ML + 1)
(6) CON2 = ESQ * SIN(2 * PHI) * (ML^2 + B - 2 * A * ML)
 2 * C
(7) CON3 = 2 * (A - ML) * (C * MLP - 2 / (SIN(2 * PHI)) - 2 * MLP
(8) DPHI = CON1 / (CON2 + CON3)
(9) PHI = PHI + DPHI
(10) If DPHI is not less than 10^{-10}, then repeat steps 2 through 9 up to 15 times.

2.20.3 Error Messages
LATITUDE FAILED TO CONVERGE AFTER "n" ITERATIONS

E0 = . . . E1 = . . .
E2 = . . . E3 = . . .
A = . . . B = . . .
C = . . .
ECCENTRICITY SQUARE = . . .

2.20.4 Size
Approximate number of source statements (excluding comments): 29
Approximate size of object code in bytes (Amdahl): 2,700
2.21 INTRODUCTION TO PROJECTION SUBROUTINES

2.21.1 Summary
Each projection is initialized by subroutine PJINIT. A projection need not be initialized again unless one or more of its parameters change. Each projection is computed by a separate subroutine. Each routine contains two sections: forward (geographic to grid) and inverse (grid to geographic). The characters XX shown below are the projection number cited in appendix C; for example, projection 14, the Orthographic, has the subroutine name of PJ14Z0. For the mathematical formulations not found here, see USGS Professional Papers 1395 and 1453.

2.21.2 Subroutine PJXXZ0 Description
SUBROUTINE PJXXZ0(COORD,CRDIO,INDIC)
This is the generalized subroutine name. COORD is the two-element REAL*8 array containing the input coordinates. CRDIN is the two-element REAL*8 array of output coordinates. INDIC is an INTEGER*2 indicator, which must be either zero to specify a forward computation or one to specify an inverse computation.

2.21.3 Error Messages
The error messages are described in the individual subroutines. PROJECTION WAS NOT INITIALIZED will be generated if parameters are missing when a forward or inverse is called before initialization.

2.21.4 COMMON Storage
The COMMON block PRINZ0 contains four parameters defining whether printout is to occur. If the first INTEGER*4 word IPEMSG is zero, error messages will print. Printing of error messages will be suppressed if IPEMSG is non-zero. The second INTEGER*4 word IPELUN is the logical unit where the error messages will print. If the third INTEGER*4 word IPPARM is zero, the initialization parameters

09/90
Software Documentation for the General Cartographic Transformation Package

will print. Printing of initialization parameters will be suppressed if IPPARM is non-zero. The fourth INTEGER*4 word IPPLUN is the logical unit where the projection initialization parameters will print.

The COMMON block ERRMZ0 contains one INTEGER*4 word IERROR consisting of the error code returned by the various routines.

The COMMON block ELLPZ0 contains the REAL*8 spheroid values AZ, EZ, ESZ, E0Z, E1Z, E2Z, E3Z, and E4Z.

The COMMON block SPHRZ0 has the REAL*8 reference spheroid radius AZZ.

The COMMON block PROJZ0 contains an INTEGER*4 code number of the previous input projection IPROJ, which is passed only between subroutine GTPZ0 and subroutine SPHDZ0.

The COMMON block SPCS contains five INTEGER*4 values and two CHARACTER*128 values, which are passed only between subroutine GTPZ0 and subroutine PJINIT. ISPHER is the spheroid code number. LU27 is the logical unit number for NAD 1927 State Plane zone constants file FILE27. LU83 is the logical unit number of the NAD 1983 State Plane zone constants file FILE83. LEN is the length of each direct access file record in bytes or words (see section 2.2.2). MSYS is the projection code (4, 7, 9, or 20) of the current State Plane Coordinate zone.

The COMMON block TOGGLE contains an array SWITCH of 23 INTEGER*4 values, which indicate the initialization status of each of the 23 projections. A SWITCH value of zero indicates initialization has not been performed. A non-zero value indicates initialization has been performed.
The COMMON block NORM contains nine REAL*8 constants for the Space Oblique Mercator projection, which are only passed between subroutine PJ22Z0 and subroutine SERAZ0.

The COMMON block PJXX (XX from 02 to 23) contains REAL*8 parameters passed between subroutine PJINIT and subroutine PJXXZ0, respectively.
2.22 SUBROUTINE PJINIT
SUBROUTINE PJINIT(ISYS,ZONE,DATA)

2.22.1 Summary
Subroutine PJINIT is used for initialization of any one of the 23 projections in GCTP. ISYS is the INTEGER*4 code number of the projection and must be from 0 to 23 as described in section 2.2.2. Zone is the INTEGER*4 zone number and must be non-zero for any projection. For ISYS = 1 (UTM), ZONE must be from -60 to +60. When ZONE = 0, the optimum UTM zone will be computed. If the user knows the UTM zone number needed, it is wiser to use it especially at zone boundaries because of the ambiguity there, rather than let the program compute the optimum UTM zone. For ISYS = 2 (State Plane), ZONE must be one of the zone codes from appendix A. State Plane coordinates can only be computed when the Clarke 1866 spheroid (INSPH = 0) is used for the North American Datum of 1927 (NAD 1927), or when the Global Reference System of 1980 (GRS 1980) spheroid (INSPH = 8) is used for the North American Datum of 1983 (NAD 1983).

DATA is the 15-element REAL*8 parameter array described in the following sections for each projection and in appendix C.

2.22.3 Error Messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Projection</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>011</td>
<td>PJ01Z0</td>
<td>ILLEGAL ZONE NO.: . . .</td>
</tr>
<tr>
<td>020</td>
<td>PJ02Z0</td>
<td>SPHEROID NO. . . IS INVALID FOR STATE PLANE TRANSFORMATIONS</td>
</tr>
<tr>
<td>021</td>
<td>PJ02Z0</td>
<td>ILLEGAL ZONE NO.: . . . FOR SPHEROID NO.: . . .</td>
</tr>
<tr>
<td>031</td>
<td>PJ03Z0</td>
<td>EQUAL LATITUDES FOR STANDARD PARALLELS ON OPPOSITE SIDES OF THE EQUATOR</td>
</tr>
<tr>
<td>041</td>
<td>PJ04Z0</td>
<td>EQUAL LATITUDES FOR STANDARD PARALLELS ON OPPOSITE SIDES OF EQUATOR</td>
</tr>
<tr>
<td>Code</td>
<td>Projection</td>
<td>Message</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>081</td>
<td>PJ08Z0</td>
<td>EQUAL LATITUDES FOR STANDARD PARALLELS ON OPPOSITE SIDES OF EQUATOR</td>
</tr>
<tr>
<td>201</td>
<td>PJ20Z0</td>
<td>INPUT DATA ERROR (Format A)</td>
</tr>
<tr>
<td>202</td>
<td>PJ20Z0</td>
<td>INPUT DATA ERROR (Format B)</td>
</tr>
<tr>
<td>221</td>
<td>PJ22Z0</td>
<td>LANDSAT NUMBER . . . AND/OR PATH NUMBER . . . ARE OUT OF RANGE</td>
</tr>
</tbody>
</table>

2.22.4 **Size**

Approximate number of source statements (excluding comments): 969

Approximate size of object code in bytes (Amdahl): 48,900

2.22.5 **Restrictions**

None
2.23 SUBROUTINE PJ01Z0

Projection: Universal Transverse Mercator

2.23.1 Definition of Parameter Array

1 Longitude of any point in the zone.
2 Latitude of any point in the zone.
 NOTE: The above are required only for a forward computation
 when the zone number is zero.
3 Not used
4 Not used
5 Not used
6 Not used
7 Not used
8 Not used
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Temporary storage of element 1 above
15 Temporary storage of element 2 above

2.23.2 Error Messages

013 Forward: PROJECTION WAS NOT INITIALIZED
014 Inverse: PROJECTION WAS NOT INITIALIZED

2.23.3 Size

Approximate number of source statements (excluding comments): 38
Approximate size of object code in bytes (Amdahl): 1,480

2.23.4 Restrictions

Requires PJ09Z0, "Transverse Mercator."
2.24 SUBROUTINE PJ02Z0

Projection: State Plane Coordinate Systems

2.24.1 Definition of Parameter Array

1 Not used
2 Not used
3 Used for Transverse Mercator, Lambert, and Oblique Mercator (see appendix C)
4 Used for Lambert and Oblique Mercator (see appendix C)
5 Used for Transverse Mercator, Lambert, Polyconic*, and Oblique Mercator (see appendix C)
6 Used for Transverse Mercator, Lambert, Polyconic*, and Oblique Mercator (see appendix C)
7 Used for Transverse Mercator, Lambert, Polyconic*, and Oblique Mercator (see appendix C)
8 Used for Transverse Mercator, Lambert, Polyconic*, and Oblique Mercator (see appendix C)
9 Not used
10 Not used
11 Not used
12 Not used
13 Used for Oblique Mercator (see appendix C)
14 Not used
15 Not used

* The Polyconic projection is used as an approximation to the Azimuthal Equidistant projection for the Guam zone.

2.24.2 Error Messages

023 Forward: PROJECTION WAS NOT INITIALIZED
024 Forward: FAILED TO CONVERGE
025 Inverse: PROJECTION WAS NOT INITIALIZED
026 Inverse: FAILED TO CONVERGE

XXX Other messages may be provided by individual projection routines

2.24.3 Size

Approximate number of source statements (excluding comments): 63
Approximate size of object code in bytes (Amdahl): 1,860
2.24.4 Restrictions

Requires PJ04Z0, PJ07Z0, PJ09Z0, or PJ20Z0, depending upon which projection the specified State zone requires.
2.25 SUBROUTINE PJ03Z0

Projection: Albers Conical Equal-Area

2.25.1 Definition of Parameter Array

1 Semimajor axis of spheroid
2 Eccentricity squared OR semiminor axis of spheroid
3 Latitude of first standard parallel
4 Latitude of second standard parallel
5 Longitude of central meridian
6 Latitude of origin of projection
7 False easting at central meridian
8 False northing at origin
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.25.2 Error Messages

033 Forward: PROJECTION WAS NOT INITIALIZED
034 Inverse: PROJECTION WAS NOT INITIALIZED

2.25.3 Size

Approximate number of source statements (excluding comments): 64
Approximate size of object code in bytes (Amdahl): 2,904

2.25.4 Restrictions

None
2.26 SUBROUTINE PJ04Z0
Projection: Lambert Conformal Conic

2.26.1 Definition of Parameter Array
1 Semimajor axis of spheroid
2 Eccentricity squared OR semiminor axis of spheroid
3 Latitude of first standard parallel
4 Latitude of second standard parallel
5 Longitude of central meridian
6 Latitude of origin of projection
7 False easting at central meridian
8 False northing at origin
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.26.2 Error Messages
043 Forward: PROJECTION WAS NOT INITIALIZED
044 Forward: POINT CANNOT BE PROJECTED
045 Inverse: PROJECTION WAS NOT INITIALIZED

2.26.3 Size
Approximate number of source statements (excluding comments): 71
Approximate size of object code in bytes (Amdahl): 2,924

2.26.4 Restrictions
None
2.27 SUBROUTINE PJ05Z0

 Projection: Mercator

2.27.1 Definition of Parameter Array

1 Semimajor axis of spheroid
2 Eccentricity squared OR semiminor axis of spheroid
3 Not used
4 Not used
5 Longitude of central meridian
6 Latitude of true scale
7 False easting at central meridian
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.27.2 Error Messages

052 Forward: PROJECTION WAS NOT INITIALIZED
053 Forward: TRANSFORMATION CANNOT BE COMPUTED AT THE POLES
054 Inverse: PROJECTION WAS NOT INITIALIZED

2.27.3 Size

Approximate number of source statements (excluding comments): 55
Approximate size of object code in bytes (Amdahl): 2,388

2.27.4 Restrictions

None
Software Documentation for the General Cartographic Transformation Package

2.28 SUBROUTINE PJ06Z0
Projection: Polar Stereographic

2.28.1 Definition of Parameter Array
1 Semimajor axis of spheroid
2 Eccentricity squared OR semiminor axis of spheroid
3 Not used
4 Not used
5 Longitude directed straight down below pole of map
6 Latitude of true scale
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.28.2 Error Messages
062 Forward: PROJECTION WAS NOT INITIALIZED
063 Inverse: PROJECTION WAS NOT INITIALIZED

2.28.3 Size
Approximate number of source statements (excluding comments): 64
Approximate size of object code in bytes (Amdahl): 2,712

2.28.4 Restrictions
None
2.29 SUBROUTINE PJ07Z0
 Projection: Polyconic

2.29.1 Definition of Parameter Array
1 Semimajor axis of spheroid
2 Eccentricity squared OR semiminor axis of spheroid
3 Not used
4 Not used
5 Longitude at central meridian
6 Latitude of origin of projection
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.29.2 Error Messages
 072 Forward: PROJECTION WAS NOT INITIALIZED
 073 Inverse: PROJECTION WAS NOT INITIALIZED

2.29.3 Size
 Approximate number of source statements (excluding comments): 67
 Approximate size of object code in bytes (Amdahl): 2,884

2.29.4 Restrictions
 The inverse computation will not converge if the longitude is
greater than 90° from central meridian.
2.30 SUBROUTINE PJ08Z0

Projection: Equidistant Conic

2.30.1 Definition of Parameter Array

<table>
<thead>
<tr>
<th>Format A (one standard parallel)</th>
<th>Format B (two standard parallels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semimajor axis of spheroid</td>
<td>OR same</td>
</tr>
<tr>
<td>2 Eccentricity squared or</td>
<td>OR same</td>
</tr>
<tr>
<td>3 semiminor axis of spheroid</td>
<td></td>
</tr>
<tr>
<td>4 Latitude of standard parallel</td>
<td>OR latitude first parallel</td>
</tr>
<tr>
<td>5 Not used</td>
<td>OR latitude second parallel</td>
</tr>
<tr>
<td>6 Longitude at central meridian</td>
<td>OR same</td>
</tr>
<tr>
<td>7 Latitude projection origin</td>
<td>OR same</td>
</tr>
<tr>
<td>8 False easting applied to</td>
<td>OR same</td>
</tr>
<tr>
<td>9 all coordinates</td>
<td>OR non-zero</td>
</tr>
<tr>
<td>10 Not used</td>
<td></td>
</tr>
<tr>
<td>11 Not used</td>
<td></td>
</tr>
<tr>
<td>12 Not used</td>
<td></td>
</tr>
<tr>
<td>13 Not used</td>
<td></td>
</tr>
<tr>
<td>14 Not used</td>
<td></td>
</tr>
<tr>
<td>15 Not used</td>
<td></td>
</tr>
</tbody>
</table>

2.30.2 Error Messages

083 Forward: PROJECTION WAS NOT INITIALIZED
084 Inverse: PROJECTION WAS NOT INITIALIZED

2.30.3 Size

Approximate number of source statements (excluding comments): 55
Approximate size of object code in bytes (Amdahl): 2,500

2.30.4 Restrictions

Use zero in parameter 9 if one standard parallel; otherwise use a non-zero value.
2.31 SUBROUTINE PJ09Z0

Projection: Transverse Mercator

2.31.1 Definition of Parameter Array

1. Semimajor axis of spheroid
2. Eccentricity squared OR semiminor axis of spheroid
3. Scale factor at central meridian
4. Not used
5. Longitude at central meridian
6. Latitude at origin of projection
7. False easting applied to all coordinates
8. False northing applied to all coordinates
9. Not used
10. Not used
11. Not used
12. Not used
13. Not used
14. Not used
15. Not used

2.31.2 Error Messages

092 Forward: PROJECTION WAS NOT INITIALIZED
093 Forward: POINT PROJECTS INTO INFINITY
094 Inverse: PROJECTION WAS NOT INITIALIZED
095 Inverse: LATITUDE FAILED TO CONVERGE AFTER . . . ITERSATIONS

2.31.3 Size

Approximate number of source statements (excluding comments): 119
Approximate size of object code in bytes (Amdahl): 5,968

2.31.4 Restrictions

The computations on the ellipsoid are valid within about 0.1 radians
(about 5.7°) of longitude from the central meridian. The formulas
break down very rapidly as the computations get further from that
meridian.
2.32 SUBROUTINE PJ10Z0

Projection: Stereographic

2.32.1 Definition of Parameter Array

1 Radius of sphere of reference
2 Not used
3 Not used
4 Not used
5 Longitude at center of projection
6 Latitude at center of projection
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.32.2 Error Messages

102 Forward: PROJECTION WAS NOT INITIALIZED
103 Forward: POINT PROJECTS INTO INFINITY
104 Inverse: PROJECTION WAS NOT INITIALIZED

2.32.3 Size

Approximate number of source statements (excluding comments): 79
Approximate size of object code in bytes (Amdahl): 3,492

2.32.4 Restrictions

None
2.33 SUBROUTINE PJ11Z0

Projection: Lambert Azimuthal Equal-Area

2.33.1 Definition of Parameter Array

1 Radius of sphere of reference
2 Not used
3 Not used
4 Not used
5 Longitude of center of projection
6 Latitude of center of projection
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.33.2 Error Messages

112 Forward: PROJECTION WAS NOT INITIALIZED
113 Forward: POINT PROJECTS INTO A CIRCLE OF RADIUS . . . METERS
114 Inverse: PROJECTION WAS NOT INITIALIZED
115 Inverse: INPUT DATA ERROR

2.33.3 Size

Approximate number of source statements (excluding comments): 86
Approximate size of object code in bytes (Amdahl): 3,672

2.33.4 Restrictions

None
2.34 SUBROUTINE PJ12Z0

Projection: Azimuthal Equidistant

2.34.1 Definition of Parameter Array

1. Radius of sphere of reference
2. Not used
3. Not used
4. Not used
5. Longitude of center of projection
6. Latitude of center of projection
7. False easting applied to all coordinates
8. False northing applied to all coordinates
9. Not used
10. Not used
11. Not used
12. Not used
13. Not used
14. Not used
15. Not used

2.34.2 Error Messages

122 Forward: PROJECTION WAS NOT INITIALIZED
123 Forward: POINT PROJECTS INTO A CIRCLE OF RADIUS . . . METERS
124 Inverse: PROJECTION WAS NOT INITIALIZED
125 Inverse: INPUT DATA ERROR

2.34.3 Size

Approximate number of source statements (excluding comments): 88
Approximate size of object code in bytes (Amdahl): 3,732

2.34.4 Restrictions

None
2.35 SUBROUTINE PJ13Z0

Projection: Gnomonic

2.35.1 Definition of Parameter Array

1. Radius of sphere of reference
2. Not used
3. Not used
4. Not used
5. Longitude of center of projection
6. Latitude of center of projection
7. False easting applied to all coordinates
8. False northing applied to all coordinates
9. Not used
10. Not used
11. Not used
12. Not used
13. Not used
14. Not used
15. Not used

2.35.2 Error Messages

132 Forward: PROJECTION WAS NOT INITIALIZED
133 Forward: POINT PROJECTS INTO INFINITY
134 Inverse: PROJECTION WAS NOT INITIALIZED

2.35.3 Size

Approximate number of source statements (excluding comments): 79
Approximate size of object code in bytes (Amdahl): 3,408

2.35.4 Restrictions

None
2.36 SUBROUTINE PJ14Z0

Projection: Orthographic

2.36.1 Definition of Parameter Array
1 Radius of sphere of reference
2 Not used
3 Not used
4 Not used
5 Longitude of center of projection
6 Latitude of center of projection
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.36.2 Error Messages
142 Forward: PROJECTION WAS NOT INITIALIZED
143 Forward: POINT CANNOT BE PROJECTED
144 Inverse: PROJECTION WAS NOT INITIALIZED
145 Inverse: INPUT DATA ERROR

2.36.3 Size
Approximate number of source statements (excluding comments): 84
Approximate size of object code in bytes (Amdahl): 3,568

2.36.4 Restrictions
None
2.37 SUBROUTINE PJ15Z0

Projection: General Vertical Near-Side Perspective

2.37.1 Definition of Parameter Array

1 Radius of sphere of reference
2 Not used
3 Height of perspective point above the surface of the sphere
4 Not used
5 Longitude of center of projection
6 Latitude of origin of projection
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.37.2 Error Messages

152 Forward: PROJECTION WAS NOT INITIALIZED
153 Forward: POINT CANNOT BE PROJECTED
154 Inverse: PROJECTION WAS NOT INITIALIZED
155 Inverse: INPUT DATA ERROR

2.37.3 Size

Approximate number of source statements (excluding comments): 88
Approximate size of object code in bytes (Amdahl): 3,816

2.37.4 Restrictions

None
2.38 SUBROUTINE PJ16Z0
 Projection: Sinusoidal

2.38.1 Definition of Parameter Array
 1 Radius of sphere of reference
 2 Not used
 3 Not used
 4 Not used
 5 Longitude of central meridian
 6 Not used
 7 False easting applied to all coordinates
 8 False northing applied to all coordinates
 9 Not used
 10 Not used
 11 Not used
 12 Not used
 13 Not used
 14 Not used
 15 Not used

2.38.2 Error Messages
 162 Forward: PROJECTION WAS NOT INITIALIZED
 163 Inverse: PROJECTION WAS NOT INITIALIZED
 164 Inverse: INPUT DATA ERROR

2.38.3 Size
 Approximate number of source statements (excluding comments): 56
 Approximate size of object code in bytes (Amdahl): 2,208

2.38.4 Restrictions
 None
2.39 SUBROUTINE PJ17Z0
Projection: Equirectangular

2.39.1 Definition of Parameter Array
1 Radius of sphere of reference
2 Not used
3 Not used
4 Not used
5 Longitude at central meridian
6 Latitude of true scale
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.39.2 Error Messages
171 Initialization: PROJECTION WAS NOT INITIALIZED
172 Forward: PROJECTION WAS NOT INITIALIZED
173 Inverse: PROJECTION WAS NOT INITIALIZED
174 Inverse: INPUT DATA ERROR

2.39.3 Size
Approximate number of source statements (excluding comments): 49
Approximate size of object code in bytes (Amdahl): 2,048

2.39.4 Restrictions
None
2.40 SUBROUTINE PJ18Z0

Projection: Miller Cylindrical

2.40.1 Definition of Parameter Array

1 Radius of sphere of reference
2 Not used
3 Not used
4 Not used
5 Longitude at central meridian
6 Not used
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.40.2 Error Messages

182 Forward: PROJECTION WAS NOT INITIALIZED
183 Inverse: PROJECTION WAS NOT INITIALIZED

2.40.3 Size

Approximate number of source statements (excluding comments): 45
Approximate size of object code in bytes (Amdahl): 2,032

2.40.4 Restrictions

None
2.41 SUBROUTINE PJ19Z0

Projection: Van der Grinten

2.41.1 Definition of Parameter Array

1 Radius of sphere of reference
2 Not used
3 Not used
4 Not used
5 Longitude at central meridian
6 Not used
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.41.2 Error Messages

192 Forward: PROJECTION WAS NOT INITIALIZED
193 Inverse: PROJECTION WAS NOT INITIALIZED

2.41.3 Size

Approximate number of source statements (excluding comments): 91
Approximate size of object code in bytes (Amdahl): 4,124

2.41.4 Restrictions

None
2.42 SUBROUTINE PJ20Z0
Projection: Oblique Mercator (Hotine)

2.42.1 Definition of Parameter Array

<table>
<thead>
<tr>
<th>Format A</th>
<th>Format B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Semimajor axis of spheroid OR same</td>
</tr>
<tr>
<td>2</td>
<td>Eccentricity squared OR same</td>
</tr>
<tr>
<td>3</td>
<td>Scale factor at center OR same</td>
</tr>
<tr>
<td>4</td>
<td>Not used OR azimuth east of north for central line</td>
</tr>
<tr>
<td>5</td>
<td>Not used OR long. of point of origin</td>
</tr>
<tr>
<td>6</td>
<td>Latitude of projection origin OR same</td>
</tr>
<tr>
<td>7</td>
<td>False easting OR same</td>
</tr>
<tr>
<td>8</td>
<td>False northing OR same</td>
</tr>
<tr>
<td>9</td>
<td>Longitude of first point defining central line OR not used</td>
</tr>
<tr>
<td>10</td>
<td>Latitude of first point OR not used</td>
</tr>
<tr>
<td>11</td>
<td>Longitude of second point OR not used</td>
</tr>
<tr>
<td>12</td>
<td>Latitude of second point OR not used</td>
</tr>
<tr>
<td>13</td>
<td>Zero OR non-zero</td>
</tr>
<tr>
<td>14</td>
<td>Not used</td>
</tr>
<tr>
<td>15</td>
<td>Not used</td>
</tr>
</tbody>
</table>

2.42.2 Error Messages
204 Forward: PROJECTION WAS NOT INITIALIZED
205 Forward: POINT PROJECTS INTO INFINITY
206 Inverse: PROJECTION WAS NOT INITIALIZED

2.42.3 Size
Approximate number of source statements (excluding comments): 89
Approximate size of object code in bytes (Amdahl): 3,992

2.42.4 Restrictions
None
2.43 SUBROUTINE PJ21Z0
 Projection: Robinson

2.43.1 Definition of Parameter Array

1 Radius of sphere of reference
2 Not used
3 Not used
4 Not used
5 Longitude at central meridian
6 Not used
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.43.2 Error Messages

212 Forward: PROJECTION WAS NOT INITIALIZED
213 Inverse: PROJECTION WAS NOT INITIALIZED

2.43.3 Size

Approximate number of source statements (excluding comments): 80
Approximate size of object code in bytes (Amdahl): 3,892

2.43.4 Restrictions

None
2.44 SUBROUTINE PJ22Z0
Projection: Space Oblique Mercator

2.44.1 Definition of Parameter Array
1 Semimajor axis of spheroid
2 Eccentricity squared OR semiminor axis of spheroid
3 Landsat number (1 to 5)
4 Path number (1-251 for Landsat 1-3 OR 1-233 for Landsat 4-5)
5 Not used
6 Not used
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.44.2 Error Messages
222 Forward: PROJECTION WAS NOT INITIALIZED
223 Inverse: 50 ITERATIONS WITHOUT CONVERGENCE
224 Inverse: PROJECTION WAS NOT INITIALIZED

2.44.3 Size
Approximate number of source statements (excluding comments): 133
Approximate size of object code in bytes (Amdahl): 6,836

2.44.4 Restrictions
Landsat 1 through 5
2.45 SUBROUTINE PJ23Z0
Projection: Modified Stereographic Conformal (for Alaska)

2.45.1 Definition of Parameter Array
1 Semimajor axis of Clarke 1866 spheroid at map scale
2 Eccentricity squared of Clarke 1866 spheroid
3 Not used
4 Not used
5 Not used
6 Not used
7 False easting applied to all coordinates
8 False northing applied to all coordinates
9 Not used
10 Not used
11 Not used
12 Not used
13 Not used
14 Not used
15 Not used

2.45.2 Error Messages
232 Forward: PROJECTION WAS NOT INITIALIZED
234 Inverse: PROJECTION WAS NOT INITIALIZED
235 Inverse: TOO MANY ITERATIONS IN ITERATING INVERSE
236 Inverse: TOO MANY ITERATIONS IN CALCULATING PHI FROM CHI

2.45.3 Size
Approximate number of source statements (excluding comments): 149
Approximate size of object code in bytes (Amdahl): 6,128

2.45.4 Restrictions
Alaska only
FUNCTION QSFNZ0
DOUBLE PRECISION FUNCTION QSFNZ0(ECC,SINPHI,COSPHI)

2.46.1 Summary
This function computes the constant "q" (variable QS) used in the forward computation for Albers Conical Equal-Area projection. All variables are REAL*8.

ECC = Eccentricity of spheroid
SINPHI = Sine of the latitude sin(PHI)
COSPHI = Cosine of the latitude cos(PHI)

2.46.2 Algorithm
QS = (1-ECC^2) * \left\{ \frac{\text{SINPHI}}{(1-ECC^2 \times \text{SINPHI}^2)} - \frac{1}{2 \times \text{ECC}} \times \ln \frac{(1-ECC \times \text{SINPHI})}{(1+\text{ECC} \times \text{SINPHI})} \right\}

Note: \ln is the natural log (base e).

2.46.3 Error Messages
None

2.46.4 Size
Approximate number of source statements (excluding comments): 11
Approximate size of object code in bytes (Amdahl): 1,004
2.47 SUBROUTINE RADDZ0

SUBROUTINE RADDZ0(RAD, SGNA, DEGS, MINS, SECS)

2.47.1 Summary

This subroutine converts a REAL*8 angle RAD in radians to sign SGNA, degrees DEGS, minutes MINS, and seconds SECS.

SGNA is the sign as either blank (for positive) or a minus sign (for negative), stored as a CHARACTER*1 value.
DEGS is the degrees, stored as an INTEGER*4 value.
MINS is the minutes, stored as an INTEGER*4 value.
SECS is the seconds, stored as a REAL*4 value.

2.47.2 Algorithm

(1) If RAD is positive, set SGNA to a blank (' '); if negative, set SGNA to a minus sign ('-').
(2) Convert radians to seconds: CON = RAD * 206264.80625
(3) Divide by 3600 and truncate to get degrees; put in DEGS
(4) Subtract 3600 * DEGS from CON; divide by 60 and truncate to get minutes; put in MINS.
(5) Remainder from step (4) is seconds; put in SECS.
(6) If SECS is larger than 59.9995, MINS is increased by 1 and SECS is set to zero.
(7) If MINS is larger than 59, DEGS is increased by 1 and MINS is set to zero.

2.47.3 Error Messages

None

2.47.4 Size

Approximate number of source statements (excluding comments): 29
Approximate size of object code in bytes (Amdahl): 1,404
2.48 SUBROUTINE SERAZ0
SUBROUTINE SERAZ0(FB,FA2,FA4,FC1,FC3,LAM)

2.48.1 Summary
This subroutine computes the integral function of the transformed longitude LAM for Fourier constants FB, FA2, FA4, FC1, and FC3 in initialization of the Space Oblique Mercator projection. All variables are REAL*8.

DG1 = 0.0174329252D0
LAM = Value of the transformed longitude in deci-degrees
SA = sine of the inclination
CA = cosine of the inclination
P22 = revolution time for satellite / rotation time for Earth

2.48.2 Algorithm
LAM = LAM * DG1
SD = SIN(LAM)
SDSQ = SD * SD
S = P22 * SA * COS(LAM) * SQRT((1 + T * SDSQ) / ((1 + W * SDSQ) * (1 + Q * SDSQ)))
H = SQRT((1 + Q * SDSQ) / (1 + W * SDSQ)) * ((1 + W * SDSQ) / (1 + Q * SDSQ) ** 2)) - P22 * CA
SQ = SQRT(XJ * XJ + S * S)
FB = (H * XJ - S * S) / SQ
FA2 = FB * COS(2 * LAM)
FA4 = FB * COS(4 * LAM)
FC = S * (H + XJ) / SQ
FC1 = FC * COS(LAM)
FC3 = FC * COS(3 * LAM)

2.48.3 Error Messages
None

2.48.4 Size
Approximate number of source statements (excluding comments): 19
Approximate size of object code in bytes (Amdahl): 1,788
2.49 SUBROUTINE SPHDZ0
SUBROUTINE SPHDZ0(ISPH, PARM)

2.49.1 Summary
Subroutine SPHDZ0 performs the input of the spheroid values of semimajor axis and the eccentricity squared into the parameter array by the use of an INTEGER*4 code number ISPH. In addition, the default reference spheroid can be reset, if desired, to one of the possible spheroids. If ISPH is negative, the user-specified spheroid parameters in variables PARM(1) and PARM(2) are used to define the radius of sphere or spheroid semimajor axis A, and semiminor axis B or eccentricity squared ES. ES is computed if B is provided greater than one. If B is zero, a sphere is assumed. If A and B are zero, the Clarke 1866 spheroid is assumed. If B is specified and A is not, the Clarke 1866 spheroid semimajor axis is assumed and is associated with B. All variables are REAL*8 except ISPH.

PARM Array of 15 projection parameters
A = AZ Semimajor axis of spheroid in meters
B Semiminor axis of spheroid or eccentricity squared
AZZ Radius of sphere
EZ Eccentricity of spheroid (zero if sphere)
ES = ESZ Eccentricity squared (zero if sphere)

2.49.2 Algorithm
PARM(1) is the semimajor axis A
PARM(2) is the eccentricity squared ES, computed from the semimajor axis and semiminor axis B, if it is greater than one, as follows:

\[ES = 1 - \left(\frac{B}{A}\right)^2 \]
The ellipsoid constants are computed as follows:

\[
\begin{align*}
E0Z &= E0FNZ0(ES) \\
E1Z &= E1FNZ0(ES) \\
E2Z &= E2FNZ0(ES) \\
E3Z &= E3FNZ0(ES) \\
E4Z &= E4FNZ0(EZ)
\end{align*}
\]

ISPH is the spheroid code as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Spheroid</th>
<th>Code</th>
<th>Spheroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Clarke 1866</td>
<td>10</td>
<td>Modified Everest</td>
</tr>
<tr>
<td>1</td>
<td>Clarke 1880</td>
<td>11</td>
<td>Modified Airy</td>
</tr>
<tr>
<td>2</td>
<td>Bessel</td>
<td>12</td>
<td>WGS 84</td>
</tr>
<tr>
<td>3</td>
<td>New International 1967</td>
<td>13</td>
<td>Southeast Asia</td>
</tr>
<tr>
<td>4</td>
<td>International 1909</td>
<td>14</td>
<td>Australian National</td>
</tr>
<tr>
<td>5</td>
<td>WGS 72</td>
<td>15</td>
<td>Krassovskv</td>
</tr>
<tr>
<td>6</td>
<td>Everest</td>
<td>16</td>
<td>Hough</td>
</tr>
<tr>
<td>7</td>
<td>WGS 66</td>
<td>17</td>
<td>Mercury 1960</td>
</tr>
<tr>
<td>8</td>
<td>GRS 1980</td>
<td>18</td>
<td>Modified Mercury 1968</td>
</tr>
<tr>
<td>9</td>
<td>Airy</td>
<td>19</td>
<td>Normal Sphere</td>
</tr>
</tbody>
</table>

2.49.3 Error Messages

The following is printed if a code ISPH is greater than 19:

SPHEROID CODE OF . . . RESET TO 0

2.49.4 Size

Approximate number of source statements (excluding comments): 73
Approximate size of object code in bytes (Amdahl): 2,812
FUNCTION TSFNZ0
DOUBLE PRECISION FUNCTION TSFNZ0(ECC, PHI, SINPHI)

2.50.1 Summary
This function computes the constant \(t \) for use in the forward computations in the Lambert Conformal Conic and the Polar Stereographic projections. All variables are REAL*8.

- ECC = Eccentricity of the spheroid
- PHI = latitude \(\phi \)
- SINPHI = sine of the latitude \(\sin(\phi) \)
- PI = the constant PI

2.50.2 Algorithm
\[
t = \tan(\pi/4 - \phi/2) \times \left[\frac{(1 + ECC \times SINPHI)}{(1 - ECC \times SINPHI)} \right]^{ECC/2}
\]

2.50.3 Error Messages
None

2.50.4 Size
Approximate number of source statements (excluding comments): 10
Approximate size of object code in bytes (Amdahl): 924
2.51 SUBROUTINE UNTFZ0
SUBROUTINE UNTFZ0(INUNIT,IOUNIT,FACTOR,IFLG)

2.51.1 Summary
This subroutine determines the FACTOR as REAL*8 to multiply between
two lineal unit types where:
INUNIT is the code for the input units.
IOUNIT is the code for the output or target units.
FACTOR is the multiplier determined by the subroutine.
IFLG is the error flag.

2.51.2 Algorithm
The following codes are used:
 0 = Radians
 1 = U.S. feet
 2 = Meters
 3 = Seconds of arc
 4 = Degrees of arc
 5 = International feet

EXAMPLES: INUNIT = 1; IOUNIT = 2; FACTOR = .3048006096012192
 INUNIT = 4; IOUNIT = 3; FACTOR = 3600

2.51.3 Error Messages
ILLEGAL SOURCE OR TARGET UNIT CODE = . . . / . . . and IFLG = 11
INCONSISTENT UNIT CODES = . . . / . . . and IFLG = 12, when
conversion was specified between distance and angular units or vice
versa.

2.51.4 Size
Approximate number of source statements (excluding comments): 29
Approximate size of object code in bytes (Amdahl): 1,788
3. OPERATING ENVIRONMENT

3.1 HARDWARE
The master version of the GCTP is operational on the Amdahl 5890/300E computer. It has been compiled using the IBM VS FORTRAN compiler and is generally used as object modules linked to application programs. The package has been compiled without change on other systems such as the Concurrent 3280, Gould Concept 9780, and Digital VAX 11/750 computers.

3.2 SUPPORT SOFTWARE

3.2.1 Operating System
The GCTP has been tested on the Amdahl 5890/300E computer operating under IBM MVS/XA JES2, the Concurrent 3280 operating under OS/32, the Gould Concept 9780 operating under MPX-32, and the Digital VAX 11/750 operating under VMS. No machine or operating system-dependent features are used.

3.2.2 Compiler/Interpreter/Assembler
The routines were written in FORTRAN under the 1977 ANSI standard. Installation with compilers not completely compatible with ANSI FORTRAN 1977 may require minor modifications.

3.2.3 Other Software
No software, other than the calling program, is required except for the normal FORTRAN compiler run-time libraries.
3.3 DATA BASE

The GCTP requires two direct access files containing the State Plane zone parameters for NAD 1927 and NAD 1983 coordinate transformations. These files may be built with program SPLOAD, which converts two ASCII files, containing 134 zones of 4 records each, to direct access files for GCTP. Program SPLOAD, the NAD 1927 file, and the NAD 1983 file are supplied with software for GCTP.
4. MAINTENANCE PROCEDURES

4.1 PROGRAMMING CONVENTIONS

Standard ANSI FORTRAN programming conventions have been followed. There is extensive use of double precision (REAL*8) variables and functions.

No utility programs or other subroutines are called other than the following FORTRAN run-time routines:

- DABS, DBLE, DCOS, DSIN, DTAN, DSQRT, DEXP, DLOG, DACOS, DASIN, DATAN, DATAN2, DMAX1, DMIN1, DMOD, DSIGN, IABS, IDINT, and SNGL.

4.2 VERIFICATION PROCEDURES

See the appendixes to USGS Professional Paper 1395 for sample data.

4.3 ERROR CORRECTION PROCEDURES

Any suspected software errors should be documented on a Discrepancy Report form (p. 70-71) and forwarded to the office cited in section 4.7.

4.4 SPECIAL MAINTENANCE PROCEDURES

No special procedures are required.

4.5 LISTING AND CHARTS

No flowcharts are available. Source code may be obtained from the maintenance office listed in section 4.6.
4.6 POINT OF CONTACT

U.S. Geological Survey
National Mapping Division
Office of Production Operations
Branch of Operations Policy
National Center Mail Stop 510
Reston, Virginia 22092

4.7 DISCREPANCY REPORTS

Reports of corrections and suggested modifications should be sent on a Discrepancy Report form (p. 70-71) to:

U.S. Geological Survey
National Mapping Division
Office of Production Operations
Configuration Management Office
National Center Mail Stop 510
Reston, Virginia 22092
<table>
<thead>
<tr>
<th>DISCREPANCY REPORT / STATEMENT OF NEED</th>
<th>DR #:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SON #:</td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Office:</td>
</tr>
<tr>
<td>Configuration Item and Number:</td>
<td>Priority:</td>
</tr>
<tr>
<td>Type ___ hardware ___ database ___ software ___ facility ___ document ___ other:</td>
<td>CIs impacted:</td>
</tr>
<tr>
<td>Date Occurred:</td>
<td>Activity in Progress:</td>
</tr>
<tr>
<td>Location: __MAC __WMC __RMMC __EDC __MCMC __HQ __Other:**</td>
<td></td>
</tr>
<tr>
<td>Supervisor’s Signature:</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Date fix required by:</td>
<td>Technical Investigation Assigned to:</td>
</tr>
<tr>
<td>Date logged:</td>
<td></td>
</tr>
<tr>
<td>Suspense Date:</td>
<td></td>
</tr>
<tr>
<td>Action: ___ Reject ___ Withdraw ___ Close ___ RFC</td>
<td></td>
</tr>
<tr>
<td>TI signature:</td>
<td></td>
</tr>
<tr>
<td>Verified by:</td>
<td>Quality Assurance:</td>
</tr>
<tr>
<td>Keywords:</td>
<td></td>
</tr>
</tbody>
</table>

70
This sheet represents page 71, which is blank.
Appendix A. State Plane Coordinate Systems

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Alpha</th>
<th>Proj. zone name or number</th>
<th>NAD27 zone code</th>
<th>NAD83 zone code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>AL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>TM</td>
<td>0101</td>
<td>0101</td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>TM</td>
<td>0102</td>
<td>0102</td>
<td></td>
</tr>
<tr>
<td>Alaska</td>
<td>AK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>OM</td>
<td>5001</td>
<td>5001</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>TM</td>
<td>5002</td>
<td>5002</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>TM</td>
<td>5003</td>
<td>5003</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>TM</td>
<td>5004</td>
<td>5004</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>TM</td>
<td>5005</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>TM</td>
<td>5006</td>
<td>5006</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>TM</td>
<td>5007</td>
<td>5007</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>TM</td>
<td>5008</td>
<td>5008</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>TM</td>
<td>5009</td>
<td>5009</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LB</td>
<td>5010</td>
<td>5010</td>
<td></td>
</tr>
<tr>
<td>Arizona</td>
<td>AZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>TM</td>
<td>0201</td>
<td>0201</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>TM</td>
<td>0202</td>
<td>0202</td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>TM</td>
<td>0203</td>
<td>0203</td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td>AR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>0301</td>
<td>0301</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>LB</td>
<td>0302</td>
<td>0302</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>LB</td>
<td>0401</td>
<td>0401</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>LB</td>
<td>0402</td>
<td>0402</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>LB</td>
<td>0403</td>
<td>0403</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>LB</td>
<td>0404</td>
<td>0404</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>LB</td>
<td>0405</td>
<td>0405</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>LB</td>
<td>0406</td>
<td>0406</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>LB</td>
<td>0407</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>0501</td>
<td>0501</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>LB</td>
<td>0502</td>
<td>0502</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>LB</td>
<td>0503</td>
<td>0503</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>0600</td>
<td>0600</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>LB</td>
<td>0700</td>
<td>0700</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>FL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>TM</td>
<td>0901</td>
<td>0901</td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>TM</td>
<td>0902</td>
<td>0902</td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>0903</td>
<td>0903</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A. State Plane Coordinate Systems--Continued

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Alpha</th>
<th>Proj. zone name or number</th>
<th>NAD27 code</th>
<th>NAD83 code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia</td>
<td>GA</td>
<td>East</td>
<td>TM</td>
<td>1001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West</td>
<td>TM</td>
<td>1002</td>
</tr>
<tr>
<td>Hawaii</td>
<td>HI</td>
<td>01</td>
<td>TM</td>
<td>5101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02</td>
<td>TM</td>
<td>5102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03</td>
<td>TM</td>
<td>5103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04</td>
<td>TM</td>
<td>5104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>05</td>
<td>TM</td>
<td>5105</td>
</tr>
<tr>
<td>Idaho</td>
<td>ID</td>
<td>East</td>
<td>TM</td>
<td>1101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central</td>
<td>TM</td>
<td>1102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West</td>
<td>TM</td>
<td>1103</td>
</tr>
<tr>
<td>Illinois</td>
<td>IL</td>
<td>East</td>
<td>TM</td>
<td>1201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West</td>
<td>TM</td>
<td>1202</td>
</tr>
<tr>
<td>Indiana</td>
<td>IN</td>
<td>East</td>
<td>TM</td>
<td>1301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West</td>
<td>TM</td>
<td>1302</td>
</tr>
<tr>
<td>Iowa</td>
<td>IA</td>
<td>North</td>
<td>LB</td>
<td>1401</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South</td>
<td>LB</td>
<td>1402</td>
</tr>
<tr>
<td>Kansas</td>
<td>KS</td>
<td>North</td>
<td>LB</td>
<td>1501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South</td>
<td>LB</td>
<td>1502</td>
</tr>
<tr>
<td>Kentucky</td>
<td>KY</td>
<td>North</td>
<td>LB</td>
<td>1601</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South</td>
<td>LB</td>
<td>1602</td>
</tr>
<tr>
<td>Louisiana</td>
<td>LA</td>
<td>North</td>
<td>LB</td>
<td>1701</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South</td>
<td>LB</td>
<td>1702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offshore</td>
<td>LB</td>
<td>1703</td>
</tr>
<tr>
<td>Maine</td>
<td>ME</td>
<td>East</td>
<td>TM</td>
<td>1801</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West</td>
<td>TM</td>
<td>1802</td>
</tr>
<tr>
<td>Maryland</td>
<td>MD</td>
<td>LB</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>MA</td>
<td>Mainland</td>
<td>LB</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Island</td>
<td>LB</td>
<td>2002</td>
</tr>
</tbody>
</table>

09/90
Appendix A. State Plane Coordinate Systems--Continued

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Alpha code</th>
<th>NAD27 zone number</th>
<th>NAD83 zone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>(Obsolete)</td>
<td>TM 2101</td>
<td>----</td>
</tr>
<tr>
<td>Central</td>
<td>(Obsolete)</td>
<td>TM 2102</td>
<td>----</td>
</tr>
<tr>
<td>West</td>
<td>(Obsolete)</td>
<td>TM 2103</td>
<td>----</td>
</tr>
<tr>
<td>North</td>
<td>LB 2111</td>
<td></td>
<td>2111</td>
</tr>
<tr>
<td>Central</td>
<td>LB 2112</td>
<td></td>
<td>2112</td>
</tr>
<tr>
<td>South</td>
<td>LB 2113</td>
<td></td>
<td>2113</td>
</tr>
<tr>
<td>Minnesota MN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB 2201</td>
<td></td>
<td>2201</td>
</tr>
<tr>
<td>Central</td>
<td>LB 2202</td>
<td></td>
<td>2202</td>
</tr>
<tr>
<td>South</td>
<td>LB 2203</td>
<td></td>
<td>2203</td>
</tr>
<tr>
<td>Mississippi MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>TM 2301</td>
<td></td>
<td>2301</td>
</tr>
<tr>
<td>West</td>
<td>TM 2302</td>
<td></td>
<td>2302</td>
</tr>
<tr>
<td>Missouri MO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>TM 2401</td>
<td></td>
<td>2401</td>
</tr>
<tr>
<td>Central</td>
<td>TM 2402</td>
<td></td>
<td>2402</td>
</tr>
<tr>
<td>West</td>
<td>TM 2403</td>
<td></td>
<td>2403</td>
</tr>
<tr>
<td>Montana MT</td>
<td>LB 2500</td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>North</td>
<td>LB 2501</td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>Central</td>
<td>LB 2502</td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>South</td>
<td>LB 2503</td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>Nebraska NE</td>
<td>LB 2600</td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>North</td>
<td>LB 2601</td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>South</td>
<td>LB 2602</td>
<td></td>
<td>----</td>
</tr>
<tr>
<td>Nevada NV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>TM 2701</td>
<td></td>
<td>2701</td>
</tr>
<tr>
<td>Central</td>
<td>TM 2702</td>
<td></td>
<td>2702</td>
</tr>
<tr>
<td>West</td>
<td>TM 2703</td>
<td></td>
<td>2703</td>
</tr>
<tr>
<td>New Hampshire NH</td>
<td>TM 2800</td>
<td></td>
<td>2800</td>
</tr>
<tr>
<td>New Jersey NJ</td>
<td>TM 2900</td>
<td></td>
<td>2900</td>
</tr>
<tr>
<td>New Mexico NM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>TM 3001</td>
<td></td>
<td>3001</td>
</tr>
<tr>
<td>Central</td>
<td>TM 3002</td>
<td></td>
<td>3002</td>
</tr>
<tr>
<td>West</td>
<td>TM 3003</td>
<td></td>
<td>3003</td>
</tr>
</tbody>
</table>
Appendix A. State Plane Coordinate Systems--Continued

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Zone Name or Number</th>
<th>NAD27 Zone Code</th>
<th>NAD83 Zone Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>NY</td>
<td>East TM 3101</td>
<td>East TM 3101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central TM 3102</td>
<td>Central TM 3102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>West TM 3103</td>
<td>West TM 3103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long Island LB 3104</td>
<td>Long Island LB 3104</td>
</tr>
<tr>
<td>North Carolina</td>
<td>NC</td>
<td>North LB 3200</td>
<td>North LB 3200</td>
</tr>
<tr>
<td>North Dakota</td>
<td>ND</td>
<td>South LB 3200</td>
<td>South LB 3200</td>
</tr>
<tr>
<td>Ohio</td>
<td>OH</td>
<td>North LB 3401</td>
<td>North LB 3401</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 3402</td>
<td>South LB 3402</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>OK</td>
<td>North LB 3501</td>
<td>North LB 3501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 3502</td>
<td>South LB 3502</td>
</tr>
<tr>
<td>Oregon</td>
<td>OR</td>
<td>North LB 3601</td>
<td>North LB 3601</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 3602</td>
<td>South LB 3602</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>PA</td>
<td>North LB 3701</td>
<td>North LB 3701</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 3702</td>
<td>South LB 3702</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>RI</td>
<td>North TM 3800</td>
<td>North TM 3800</td>
</tr>
<tr>
<td>South Carolina</td>
<td>SC</td>
<td>South LB ----</td>
<td>South LB ----</td>
</tr>
<tr>
<td>South</td>
<td></td>
<td>North LB 3901</td>
<td>South LB ----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 3902</td>
<td>South LB ----</td>
</tr>
<tr>
<td>South Dakota</td>
<td>SD</td>
<td>North LB 4001</td>
<td>North LB 4001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 4002</td>
<td>South LB 4002</td>
</tr>
<tr>
<td>Tennessee</td>
<td>TN</td>
<td>North LB 4100</td>
<td>North LB 4100</td>
</tr>
<tr>
<td>Texas</td>
<td>TX</td>
<td>North LB 4201</td>
<td>North LB 4201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>North Central LB 4202</td>
<td>North Central LB 4202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central LB 4203</td>
<td>Central LB 4203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South Central LB 4204</td>
<td>South Central LB 4204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 4205</td>
<td>South LB 4205</td>
</tr>
<tr>
<td>Utah</td>
<td>UT</td>
<td>North LB 4301</td>
<td>North LB 4301</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central LB 4302</td>
<td>Central LB 4302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>South LB 4303</td>
<td>South LB 4303</td>
</tr>
<tr>
<td>Vermont</td>
<td>VT</td>
<td>North TM 4400</td>
<td>North TM 4400</td>
</tr>
</tbody>
</table>
Appendix A. State Plane Coordinate Systems--Continued

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Alpha code</th>
<th>Proj. zone name or number</th>
<th>Type</th>
<th>Proj. zone code NAD27</th>
<th>Proj. zone code NAD83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginia</td>
<td>VA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>4501</td>
<td></td>
<td>4501</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>LB</td>
<td>4502</td>
<td></td>
<td>4502</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>WA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>4601</td>
<td></td>
<td>4601</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>LB</td>
<td>4602</td>
<td></td>
<td>4602</td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td>WV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>4701</td>
<td></td>
<td>4701</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>LB</td>
<td>4702</td>
<td></td>
<td>4702</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>WI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>LB</td>
<td>4801</td>
<td></td>
<td>4801</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>LB</td>
<td>4802</td>
<td></td>
<td>4802</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>LB</td>
<td>4803</td>
<td></td>
<td>4803</td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>WY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East (01)</td>
<td>TM</td>
<td>4901</td>
<td></td>
<td>4901</td>
<td></td>
</tr>
<tr>
<td>East Central (02)</td>
<td>TM</td>
<td>4902</td>
<td></td>
<td>4902</td>
<td></td>
</tr>
<tr>
<td>West Central (03)</td>
<td>TM</td>
<td>4903</td>
<td></td>
<td>4903</td>
<td></td>
</tr>
<tr>
<td>West (04)</td>
<td>TM</td>
<td>4904</td>
<td></td>
<td>4904</td>
<td></td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>PR</td>
<td>LB</td>
<td></td>
<td>5201</td>
<td>5200</td>
</tr>
<tr>
<td>Virgin Islands</td>
<td>VI</td>
<td>LB</td>
<td></td>
<td>5201</td>
<td>5200</td>
</tr>
<tr>
<td>St. Croix</td>
<td>LB</td>
<td>5202</td>
<td></td>
<td>5202</td>
<td>5200</td>
</tr>
<tr>
<td>American Samoa</td>
<td>AS</td>
<td>LB</td>
<td></td>
<td>5300</td>
<td>----</td>
</tr>
<tr>
<td>Guam</td>
<td>GU</td>
<td>PC</td>
<td></td>
<td>5400</td>
<td>----</td>
</tr>
</tbody>
</table>

TM = Transverse Mercator
OM = Oblique Mercator
PC = Polyconic
LB = Lambert
Appendix B. Universal Transverse Mercator zone locations

<table>
<thead>
<tr>
<th>Zone</th>
<th>C.M.</th>
<th>Range</th>
<th>Zone</th>
<th>C.M.</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>177W</td>
<td>180W-174W</td>
<td>31</td>
<td>003E</td>
<td>000E-006E</td>
</tr>
<tr>
<td>02</td>
<td>171W</td>
<td>174W-168W</td>
<td>32</td>
<td>009E</td>
<td>006E-012E</td>
</tr>
<tr>
<td>03</td>
<td>165W</td>
<td>168W-162W</td>
<td>33</td>
<td>015E</td>
<td>012E-018E</td>
</tr>
<tr>
<td>04</td>
<td>159W</td>
<td>162W-156W</td>
<td>34</td>
<td>021E</td>
<td>018E-024E</td>
</tr>
<tr>
<td>05</td>
<td>153W</td>
<td>156W-150W</td>
<td>35</td>
<td>027E</td>
<td>024E-030E</td>
</tr>
<tr>
<td>06</td>
<td>147W</td>
<td>150W-144W</td>
<td>36</td>
<td>033E</td>
<td>030E-036E</td>
</tr>
<tr>
<td>07</td>
<td>141W</td>
<td>144W-138W</td>
<td>37</td>
<td>039E</td>
<td>036E-042E</td>
</tr>
<tr>
<td>08</td>
<td>135W</td>
<td>138W-132W</td>
<td>38</td>
<td>045E</td>
<td>042E-048E</td>
</tr>
<tr>
<td>09</td>
<td>129W</td>
<td>132W-126W</td>
<td>39</td>
<td>051E</td>
<td>048E-054E</td>
</tr>
<tr>
<td>10</td>
<td>123W</td>
<td>126W-120W</td>
<td>40</td>
<td>057E</td>
<td>054E-060E</td>
</tr>
<tr>
<td>11</td>
<td>117W</td>
<td>120W-114W</td>
<td>41</td>
<td>063E</td>
<td>060E-066E</td>
</tr>
<tr>
<td>12</td>
<td>111W</td>
<td>114W-108W</td>
<td>42</td>
<td>069E</td>
<td>066E-072E</td>
</tr>
<tr>
<td>13</td>
<td>105W</td>
<td>108W-102W</td>
<td>43</td>
<td>075E</td>
<td>072E-078E</td>
</tr>
<tr>
<td>14</td>
<td>099W</td>
<td>102W-096W</td>
<td>44</td>
<td>081E</td>
<td>078E-084E</td>
</tr>
<tr>
<td>15</td>
<td>093W</td>
<td>096W-090W</td>
<td>45</td>
<td>087E</td>
<td>084E-090E</td>
</tr>
<tr>
<td>16</td>
<td>087W</td>
<td>090W-084W</td>
<td>46</td>
<td>093E</td>
<td>090E-096E</td>
</tr>
<tr>
<td>17</td>
<td>081W</td>
<td>084W-078W</td>
<td>47</td>
<td>099E</td>
<td>096E-102E</td>
</tr>
<tr>
<td>18</td>
<td>075W</td>
<td>078W-072W</td>
<td>48</td>
<td>105E</td>
<td>102E-108E</td>
</tr>
<tr>
<td>19</td>
<td>069W</td>
<td>072W-066W</td>
<td>49</td>
<td>111E</td>
<td>108E-114E</td>
</tr>
<tr>
<td>20</td>
<td>063W</td>
<td>066W-060W</td>
<td>50</td>
<td>117E</td>
<td>114E-120E</td>
</tr>
<tr>
<td>21</td>
<td>057W</td>
<td>060W-054W</td>
<td>51</td>
<td>123E</td>
<td>120E-126E</td>
</tr>
<tr>
<td>22</td>
<td>051W</td>
<td>054W-048W</td>
<td>52</td>
<td>129E</td>
<td>126E-132E</td>
</tr>
<tr>
<td>23</td>
<td>045W</td>
<td>048W-042W</td>
<td>53</td>
<td>135E</td>
<td>132E-138E</td>
</tr>
<tr>
<td>24</td>
<td>039W</td>
<td>042W-036W</td>
<td>54</td>
<td>141E</td>
<td>138E-144E</td>
</tr>
<tr>
<td>25</td>
<td>033W</td>
<td>036W-030W</td>
<td>55</td>
<td>147E</td>
<td>144E-150E</td>
</tr>
<tr>
<td>26</td>
<td>027W</td>
<td>030W-024W</td>
<td>56</td>
<td>153E</td>
<td>150E-156E</td>
</tr>
<tr>
<td>27</td>
<td>021W</td>
<td>024W-018W</td>
<td>57</td>
<td>159E</td>
<td>156E-162E</td>
</tr>
<tr>
<td>28</td>
<td>015W</td>
<td>018W-012W</td>
<td>58</td>
<td>165E</td>
<td>162E-168E</td>
</tr>
<tr>
<td>29</td>
<td>009W</td>
<td>012W-006W</td>
<td>59</td>
<td>171E</td>
<td>168E-174E</td>
</tr>
<tr>
<td>30</td>
<td>003W</td>
<td>006W-000E</td>
<td>60</td>
<td>177E</td>
<td>174E-180W</td>
</tr>
</tbody>
</table>

UTM zone numbers in the Southern Hemisphere are indicated by a negative sign before the zone number.

Example: Zone -17 has a central meridian of 81° W and a false northing (Y) of 10,000,000 meters at the Equator.
Appendix C. Parameters required for definition of map projections

<table>
<thead>
<tr>
<th>Parm</th>
<th>No.</th>
<th>Geographic</th>
<th>Universal</th>
<th>State</th>
<th>Albers</th>
<th>Lambert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Transverse</td>
<td>Plane</td>
<td>Conical</td>
<td>Conformal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mercator</td>
<td>Coordinates</td>
<td>Equal-Area</td>
<td>Conic</td>
<td></td>
</tr>
</tbody>
</table>

1. --- Longitude of --- Semimajor axis.
 . . . any point in . . If blank / 0, Clarke 1866.
 . . . the UTM zone . . in meters is assumed.

2. --- Latitude of --- Eccentricity squared of.
 . . . any point in . . ellipsoid. 0 for sphere.
 . . . the UTM zone . . If >1, semiminor axis.

3. --- . . . Latitude of 1st standard . parallel.

5. --- . . . Longitude of the central . meridian.

6. --- . . . Longitude of the origin . of projection.

7. --- . . . False easting in units of . semimajor axis.

8. --- . . . False northing in units . of semimajor axis.

Note: Parameters 9-15 are not used for projections on this page. All angles (latitudes, longitudes, or azimuth) are required in degrees, minutes, and seconds of arc in the packed real number format ±DDDMMSS.SSS where ± is the sign, DDD is the degrees, MMM is the minutes, and SSS.SSS is the seconds.

* If a UTM or State Plane zone is specified, the projection parameters will be supplied by the program and those given by the user will be ignored.
Appendix C. Parameters required for definition of map projections—Continued

<table>
<thead>
<tr>
<th>Parm.</th>
<th>(05)</th>
<th>(06)</th>
<th>(07)</th>
<th>(08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Mercator</td>
<td>Polar</td>
<td>Polyconic</td>
<td>Equidistant Conic</td>
</tr>
<tr>
<td></td>
<td>Stereo-</td>
<td>graphic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type A</td>
<td>Type B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Semimajor axis of ellipsoid.** If blank or 0, Clarke 1866 in meters used.

2. **Eccentricity squared of ellipsoid** \((e^2) \). If blank or 0, assume sphere. If >1, interpreted as semiminor axis of ellipsoid.

3. **Latitude of 1st standard parallel.**

4. **Latitude of 2nd standard parallel.**

5. **Longitude of straight down.**

6. **Latitude of origin of projection.**

7. **False easting in the same units as the semimajor axis.**

8. **False northing in the same units as the semimajor axis.**

9. **---**

Note: Parameters 10-15 are not used for projections on this page.
Appendix C. Parameters required for definition of map projections—Continued

<table>
<thead>
<tr>
<th>Parm.</th>
<th>(09)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
<th>(13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Transverse</td>
<td>Stereo-</td>
<td>Lamb.</td>
<td>Azimuth.</td>
<td>Azimuthal</td>
</tr>
<tr>
<td></td>
<td>Mercator</td>
<td>graphic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Same as</td>
<td>.</td>
<td>Radius of sphere of reference</td>
<td>.</td>
<td>(03) to (08)</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>Same as</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>Scale factor.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>Longitude of.</td>
<td>Longitude of center of projection</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>central</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>meridian</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>Latitude of.</td>
<td>Latitude of center of projection</td>
<td>.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>origin</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>False easting in the same units as the semimajor axis or radius of the sphere</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>False northing in the same units as the semimajor axis or radius of the sphere</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Note: Parameters 9-15 are not used for projections on this page.
Appendix C. Parameters required for definition of map projections--Continued

<table>
<thead>
<tr>
<th>Parm</th>
<th>(14)</th>
<th>(15)</th>
<th>(16)</th>
<th>(17)</th>
<th>(18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Orthographic</td>
<td>General Vert</td>
<td>Sinusoidal</td>
<td>Equi-</td>
<td>Miller</td>
</tr>
<tr>
<td></td>
<td>Near-Side</td>
<td>rectangular</td>
<td>Cylindrical</td>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Radius of sphere of reference (default of 6370997 meters)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>---</td>
<td>Height of perspective</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Longitude of center of projection</td>
<td>Longitude of central meridian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Latitude of center of projection</td>
<td>---</td>
<td>Latitude of true scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>False easting in the same units as the radius of sphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>False northing in the same units as the radius of sphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Parameters 9-15 are not used for projections on this page.
Appendix C. Parameters required for definition of map projections--Continued

<table>
<thead>
<tr>
<th>Parm.</th>
<th>(19)</th>
<th>(20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Van der Grinten</td>
<td>Oblique Mercator</td>
</tr>
<tr>
<td>1</td>
<td>Reference</td>
<td>Semimajor axis of</td>
</tr>
<tr>
<td>2</td>
<td>Sphere</td>
<td>(default Clarke 1866)</td>
</tr>
<tr>
<td>3</td>
<td>Radius of sphere</td>
<td>Longitude of 1st point</td>
</tr>
<tr>
<td>4</td>
<td>Latitude of 1st point</td>
<td>Eccentricity squared</td>
</tr>
<tr>
<td>5</td>
<td>1st point</td>
<td>Scale factor at center of the projection</td>
</tr>
<tr>
<td>6</td>
<td>center line</td>
<td>Az. angle</td>
</tr>
<tr>
<td>7</td>
<td>center line</td>
<td>E of N of</td>
</tr>
<tr>
<td>8</td>
<td>center line</td>
<td>Latitude of the origin</td>
</tr>
<tr>
<td>9</td>
<td>Latitude</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>2nd point</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>2nd point</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: Parameters 9-15 are not used for Van der Grinten projection.
Appendix C. Parameters required for definition of map projections--Continued

<table>
<thead>
<tr>
<th>Parm</th>
<th>(21)</th>
<th>(22)</th>
<th>(23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Robinson</td>
<td>Space</td>
<td>Modified</td>
</tr>
<tr>
<td>. .</td>
<td>Oblique</td>
<td>Stereographic</td>
<td></td>
</tr>
<tr>
<td>. .</td>
<td>Mercator</td>
<td>for Alaska</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Radius of sphere of ellipsoid. If blank or 0, Clarke 1866 ellipsoid reference. Clarke 1866 in meters used. must be used.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Eccentricity squared (0. Eccentricity squared of for sphere). If >1, Clarke 1866 ellipsoid semiminor axis must be used.</td>
</tr>
<tr>
<td>3</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Longitude at central meridian</td>
</tr>
<tr>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>False easting in the same units as the semimajor axis</td>
</tr>
<tr>
<td>8</td>
<td>False northing in the same units as the semimajor axis</td>
</tr>
</tbody>
</table>

Note: Parameters 9-15 are not used for projections on this page.