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Meso- and Micro-scale models

Phenomena impact
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Scales of atmospheric phenomena (adopted from Schliinzen et al., 2011)
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Figure. Basic urban wind effects by structures (e.g., buildings). (a) Wind profile upwind of the building. (b) Upward and downward
deflection. (c) Downwind eddy and counter current. (d) Venturi effect (wind speed intensified by gap). Note that (a)-(c) corresponds

to the side view of the building; in contrast (d) corresponds to a top view.
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Figure. Basic urban effects by vegetation. PM deposition on leaves reduces downwind exposure. Figure retrieved from Sheikh et

al., 2023: Efficacy of green infrastructure in reducing exposure to local, traffic-related sources of airborne particulate matter (PM).



Air pollution vs Heat benefits

Heat and pollution benefits can be at cross-purposes depending on the location and the tree species, thus carefully
matching species / form with location is required to maximize benefits and prevent harm!
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Tree placement can determine harms or benefits of trees WRT air pollution
| | ] | | | | | .
2) o b) \

©

Current
¢
Condltlon'ﬂ-’gsi o . / ; 0.3 ‘A I
V AW N Highway
v ¢ £ A c & >
¢ b .9 ~ -
I On-road conc. are not
s shown to highlight
g downwind conc. Current Condition
o]
o 0.2+ B
©
(]
N _
£ A No Trees
S e 4
z T
0.1 [~
—&— No Tree

—X— Current condition; Inert gas w/ zero depsotion

—=— Current condition; 15 nm particles, high deposition
4~ Design case; Inert gas w/ zero depsotion

— — Design case; 15 nm particles, high deposition

| [ [ [ I | I [
0 20 40 60 80 100 120 140
Distance (m)

|dentical tree inventory results in worse air pollution than no trees when placed randomly, but improves
air quality when placed in structured rows! (Figure produced by Dr. Max Zhang using CTAG)



Design Questions: [Viodelling

How much shade is
required to lower local
air temperature?

A

Model different
quantities of shade /
number of trees of
various sizes

Can interventions
increase wind
speed to reduce
temperature?

Do existing structures
create "cool spots"
that should be
leveraged for gathering

Can we prevent near-
road shade- trees from
trapping pollution by
using a layered
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Model the shape and
size requirements of
interventions for
windspeed increase
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Given available widths of
roadside planting zones,
can an effective buffer
against air pollution be
made by targeting a
certain leaf area density
threshold?

Given design constriants
on leaf-area density, can
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air pollution be made by
targeting a certain
planting-zone width
threshold?
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Harry Hines Corridor in Dallas’ Southwestern Medical District

e 2 mile corridor through medical district

e To be completely re-landscaped

e Installed ~40 microclimate sensor (measuring wind speed, radiant temperature,
air temperature and humidity)

e Simulations of existing and proposed conditions with SOLWEIG, ENVI-MET and
OpenFOAM were used to evaluate design scenarios for thermal stress and air
pollution

e Sensor data was used to validate the simulation results for thermal studies (but
air pollution will be harder!)
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3D “digital twin”



3D Mapping ‘ - gltaltwm

western M




Existing data layers

Public City GIS USGS Elevation OpenStreetMap
GIS / Microsoft
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Model Leaf Area Density - LAD

LAD Analysis
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Defining SWMD environmental conditions



Satellite imagery can see trends over large areas and over time




As of May 1st 2023

27 sensors were
placed along Harry
Hines from Butler to
Medical District Drive
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SOLWEIG tMRT 0:53 Pegasus Park
July 12th 2023
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Existing Conditions vs FO 30% Summer Afternoon Mean Radiant Temperature, years 0 and 50
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FO 30% design Year 50: average MRT = 52.38 C (14C cooling over existing conditions)




Particulate dispersion CFD models
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Figure. Schematic of proposed framework and models for urban CFD simulations.
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Figure. Windrose plot for Dallas Love Field in Dallas, TX (32.8 N, 96.8 S). (a) Windrose plot from January 2004 to December 2023. The data

considered all months and was limited to a time range from 7 am to 8 pm. (b) Weather station site (Dallas Love Field) in Dallas, TX (32.8 N, 96.8

S). Area of interest (AQI) rectangle encloses both sites considered.



Traffic Count
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Mobility study & emissions

Alternatives: Street-Light

Emission factors: running exhaust, brake and tire wear (g/mile-veh) via
emission inventory (e.g., EMFAC)

Vehicle categories: light-, medium-, and heavy-duty.

Harry Hines Blvd Mobility Study

Traffic Parameters per Vehicle Category
PC MD HD UNITS
percentage 92 2 6 %
frontal area 2 2.7 11.75 m2
drag coefficient 0.35 0.5 0.65
speed 15 15 15 m/s
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Figure. Harry Hines Blvd. mobility study (hourly traffic count over 6 lanes).




Wind Model

Non-hydrostatic incompressible Reynolds-averaged continuity (mass
conservation) and Navier-Stokes (momentum conservation) equations.
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Vegetation is represented as a porous medium (Darcy-Forchiemer)

Effects are proportional to the tree species (tree size, shape, and LAD).




Wind Model

Non-hydrostatic incompressible Reynolds-averaged continuity (mass
conservation) and Navier-Stokes (momentum conservation) equations.
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Turbulence closure is achieved via the standard k-epsilon turbulence model which
requires solving two transport equations for turbulent kinetic energy (TKE) and
TKE dissipation rate (epsilon).

k

ok SN | A S R
o T W)= ax]_’(" t )axj]+6k €t S




Vehicle Induced Turbulence (VIT)

Turbulent kinetic energy is injected into a traffic region (Hashad et al., 2022; Tong et al.,
2015; Steffens et al. 2012) instead of explicitly modeling vehicles in the domain to implicitly
model vehicle-induced turbulence (VIT).

Vehicle categories: light-, medium-, and heavy-duty vehicles.
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Figure. Wind speed on a terrain-following surface 1.5 m above ground at the Harry Hines corridor. Wind speed at pedestrian level <
for the selected wind directions. The color bar indicates the wind speed (m/s), and the yellow vectors indicate the direction of the

wind. Note that the region shown extends 350 m from the center location.
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Figure. Wind speed on a terrain-following surface 1.5 m above ground at the Harry Hines corridor. Wind speed at pedestrian

level (1.5 m above ground) for the selected wind directions. The color bar indicates the wind speed (m/s), and the yellow vectors

indicate the direction of the wind flow. Note that the region shown extends 225 x 85 m.
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Figure. Wind speed on a terrain

ground) for the selected wind directions. The color bar indicates the wind speed (m/s), and the yellow vectors indicate the direction of the wind

flow. Note that the region shown extends 225 x 85 m.



Dispersion Model

Passive scalar transport based on the scalar-advection diffusion equation.

The steady-state wind field is held static
Background pollution is not considered

Pollutant is released at a fixed rate over traffic volume
Dry deposition (Zhang et al., 2001) on vegetation

ac 3 3 ac
Sy a_(<u>c) axi(Dtax) S_+5,

Sdep

=-LADV,C

dep




ug / m Hg/md
1.0 1.0
0.9 0.9
08 . 08 .
0.7 % 0.7 %
06 £ 06 £
05 $ 05 $
0.4 é 0.4 é
03 3 03 5
02 & 02 &
— o — o
~00 ~00
Max: 1.0 Max: 1.0
Min: 0.0 Min: 0.0

Figure. PM concentration on a terrain-following surface 1.5 m above ground at the Harry Hines corridor. PM2.5 concentration at pedestrian level

for the selected wind directions. Note that the region shown extends 350 m from the center location.
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Microclimate Wind Study




Where structures increase wind-speed Areas where adding new shade trees might not help

Where trees reduce wind-speed /‘ Where new shade trees would help a lot \
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Wind Flow Simulation Thermal Comfort Simulation

Simulation of thermal comfort shows how trees can help (by shading) or hurt (by
slowing wind)




February

Cold and warm season comfort dynamics are inverted, so sunny and slow-wind areas are most
comfortable in the winter, while shady, fast-wind areas are most comfortable in the spring and
summer. Built-environment planners can leverage this for seasonal programming.




Conclusions

e CFD simulation results heavily depend on the quality of inputs
(meteorological, traffic, digital twin)

e More monitoring is needed to establish baselines

e Validation of the models will reinforce their weight

e hyphae is planning transient CFD simulations that are nested with
meso-scale models (WRF)

e Other sources (e.g., stacks, fires, ...)
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