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EQUATES: EPA’s Air Quality Time Series Project

A collaboration across different parts of EPA to develop modeled meteorology, emissions, air quality and
pollutant deposition for 2002 - 2019. Modeling datasets were publicly released in 2021 and have been widely
distributed and used by researchers in and outside of EPA.

In this talk “EQUATES” = output from CMAQvV5.3.2 simulations using consistent emissions and meteorology.

Downscaler: Fused Air Quality Surfaces using Downscaling (FAQSD or DS)

Bayesian statistical model developed by researchers from UC Urvine, Duke, BYU, and EPA to create
fused daily average ozone and PM, ; estimates for the contiguous US based on air quallty modeling and
observations. In this talk “EQUATES DS” = EQUATES CMAQ + observations fused using DS.

CDC DS: DS ozone and PM, ; fused estimates to inform the CDC’s National
Environmental Public Health Tracking Network

The 2002-2020 CDC DS data were developed by EPA over the last 15 years based on the best air quality
modeling data available at the time. Fused ozone and PM, 5 data are publicly available through EPA's RSIG,
including comprehensive technical support documents (Annual Reports) for each year.
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https://www.epa.gov/hesc/rsig-related-downloadable-data-files#faqsd

Background and Motivation
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EQUATES Downscaler Objectives

- Create EQUATES daily average PM, s and Maximum daily 8-hr Ozone
(MDAS8 O3) fused estimates for 2002-2019 for the contiguous US.

—> EQUATES DS fused estimates provide a consistent timeseries of bias-adjusted model estimates
for epidemiological studies and other applications.

- Use cross validation to evaluate PM, s and MDAS8 O3 estimates from
- EQUATES DS vs EQUATES CMAQ output (fused vs raw)
- EQUATES DS vs CDC DS (fused vs fused)

- What is the impact of using improved CMAQ modeling datasets on the final fused
surfaces?

A sample of this evaluations is included in this presentation.
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How different are the model data used in the CDC and EQUATES DS estimates?

CMAQ Version for CDC and EQUATES Fused Surfaces

cDC EQUATES
2002 | CMAQv4.6 (12km + 36km) CMAQ5.3.2
2003 | CMAQv4.7 (12km + 36km) CMAQV5.3.2
2004 | CMAQv4.7 (12km + 36km) CMAQV5.3.2
2005 | CMAQv4.7 (12km + 36km) CMAQ5.3.2
2006 | CMAQv4.7 (12km + 36km) CMAQV5.3.2
2007 | CMAQv4.7.1 CMAQV5.3.2
2008 | CMAQv4.7.1 CMAQ5.3.2
2009 | CMAQv4.7.1 CMAQV5.3.2
2010 |CMAQv4.7.1 CMAQV5.3.2
2011 | CMAQv5.0.2 CMAQ5.3.2
2012 | CMAQv5.0.2 CMAQV5.3.2
2013 | CMAQv5.1 CMAQV5.3.2
2014 | CMAQV5.2 CMAQ5.3.2
2015 | CMAQv5.2.1 CMAQV5.3.2
2016 | CMAQV5.3 CMAQV5.3.2
2017 | CMAQv5.3.1 CMAQ5.3.2
2018 | CMAQv5.3.2 CMAQV5.3.2
2019 | CMAQv5.3.2 CMAQV5.3.2

Comblned 36US and 12EUS (2002-2006 CDC Domalin) 12US1 Domaln (CDC 2007 onward and all of EQUATES)

Overlap of 36US, 12EUS, and 12US1 Domalns

2002-2006 CDC CMAQ
simulations consisted
of 12EUS and 36US
simulations that were
concatenated.

CDC and EQUATES model inputs (e.g.,
emissions, meteorology) and configurations
differ for every year, even 2018 and 2019
which used the same CMAQ version.
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Fused Air Quality Surfaces using Downscaling
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Formulation of the Downscaler Bayesian statistical model Matlab code to implement the Downscaler approach

Presents three spatial formulations of the Downscaler Implements formulation 3. with some modifications.

1. Univariate Downscaler
2. Gaussian Markov Random field (GMRF) smoothed downscaler

3. Smoothed downscaler using spatially varying random weights

Office of Research and Development 8
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Smoothed Downscaler using spatially varying random weights

e(s) ~ N(0,7%) (7)

#(s) = ) |wi(s)he(By). (8)

n(B) ™ N(0,0%) (4)

Parameterized random spatial processes; Bayesian
estimation of parameters is used to determine
poster distribution of X(s).

* Ozone transformation = square root

Berrocal et al., 2012 PM2.5 transformation = natural log

wEPA

Y(s) = Transformed* observed daily value at site s
Bo(s) = spatially varying additive bias correction
(mean-zero GP with exponential covariance)

,[;51 = global multiplicative bias correction

X(s) = weighted average of smoothed CMAQ,
estimates

£(s) = white noise processes

wy (s) = random spatially varying weights that can
have directionality to allow for spatial
misalignment of modeled and observed
processes (e.g., plumes in the wrong place)

x(By) = smoothed version of transformed*
CMAQ estimate at grid cell By; allows grid
cells surrounding s to inform estimate Y (s).

U = global mean (applied to all grid cells)

V(B) = a mean-zero Gaussian Markov random field
with a conditionally autoregressive structure

n(s) = white noise processes

Office of Research and Development 9
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Smoothed Downscaler using spatially varying random weights

e(s) ~ N(0,7%) (7)

i(s) = S Juwe(5)2(B, ) (8)

k=1

2(B) = ju + V(B) + n(B) n(B) ™ N(0,0%) (4)

* Ozone transformation = square root

Berrocal et al., 2012 PM2.5 transformation = natural log

wEPA

Y(s) = Transformed* observed daily value at site s
Bo(s) = spatially varying additive bias correction
(mean-zero GP with exponential covariance)

,[;51 = global multiplicative bias correction

X(s) = weighted average of smoothed CMAQ,
estimates

£(s) = white noise processes

wi (s) = random spatially varying weights that can
have directionality to allow for spatial
misalignment of modeled and observed
processes (e.g., plumes in the wrong place)

x(By) = smoothed version of transformed*
CMAQ estimate at grid cell By; allows grid
cells surrounding s to inform estimate Y (s).

U = global mean (applied to all grid cells)

V(B) = a mean-zero Gaussian Markov random field
with a conditionally autoregressive structure

n(s) = white noise processes
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{(a) Location of the four sites for which we are displaying the posterior predictive mean of
the spatially varying random weights wy, (s. ). (b)—(e) Posterior predictive mean of the
spatially varying random weights wy (s, 1) for sites: (b) s;: (c) s2: (d) s3; and (e) 54 on July 4,

2001 Berrocal et al., 2012
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Weights
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-70.4

Posterior predictive mean of the
spatially varying weights wy (s) at
four locations.

Weights are not a circular contour
around the prediction site but have
directionality (analogous to
anisotropy in spatial variogram
fitting).

Directionality can be different
depending on the site due emissions
sources, land use and topography,
wind flow patterns, etc.

Weights are parameterized such that
only the window of 6 x 6 grid cells
surrounding, and including, grid cell
B}, are assigned a weight.
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Example Downscaler Fused Ozone Field

ppbv
= &0

EQUATES CMAQ

70

&0

50

40

30 o

20

sy Aug 10, 2002 Example Maximum Daily 8-hr Ozone (MIDA8 O,)
70 * CMAQ is biased low in the west and biased high in much of the
60 eastern US. DS adjusts the model output accordingly.
0 * Fused surface is smoother than the CMAQ output, muting peak
“0 values and spatial gradients.
%0 » Spatial gradients (e.g., flow patterns) from the model are still
= retained, leading to a surface that is more spatially heterogeneous
o than a spatial field of purely interpolated observations, particularly
in areas with fewer monitors.
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Development of Cross Validation Approach

To evaluate the fused surfaces, we implemented two types of cross
validation.

10-fold CV - used for MDA O; and PM,

DS model is fit using 90% of sites ( )
to estimate remaining 10% (prediction).

2002-01-02

1-in-3-day CV - used for PM,

Daily average PM, - from continuous FEM
and daily filter sites are used as the
training sites and 1-in-3-day and 1-in-6-
day filter sites are used as the prediction

° 2 ;.-I
SItES. e Training (Continuous sites) "
Prediction (1-in-3-day sites)x
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MDAS8 Ozone Results Summary
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Decreased Bias using DS
2018 Spring/Summer Model - Obs. MDA8 O, Mean Bias

EQUATES CMAQ Mean Bias EQUATES DS CV Mean Bias
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Not a surprise — fused estimates decrease model bias!
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How different are the Fused and CMAQ MDAS8 O, CV errors?

Monthly Average | EQUATES DS — Observed MDAS8 O,| - | EQUATES CMAQ — Observed MDAS O, |
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3 to 6 ppb average decrease in absolute estimation error using DS compared to ‘raw’ CMAQ output.
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How different are the EQUATES and CDC CMAQ MDAS8 O, CV errors?

Monthly Average | EQUATES — Observed MDA8 O,| - | CDC — Observed MDAS O, |
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EQUATES ‘raw’ CMAQ output has lower error than CDC CMAQ simulations in 2002-2004, 2011.
wEPA
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How different are the EQUATES and CDC Fused MDAS8 O, errors?

Monthly Average | EQUATES DS — Observed MDA8 O,| - | CDC DS — Observed MDAS8 O, |
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EQUATES DS estimates have slightly lower average error (<0.13 ppb) than CDC DS in 2002-2004, 2

011.
wEPA
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Seasonal/Regional Average of
| EQUATES DS - Observed MIDA8 O, | - | CDC DS — Observed MDAS8 O, |
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EQUATES DS has slightly lower average absolute error than CDC DS fused estimates for most regions and years.

wEPA
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PM, ;: Results Summary
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Decreased Bias using DS
2018 Summer Model - Obs. PM, ; Mean Bias

pug/m?
EQUATES CMAQ Mean Bias EQUATES DS CV Mean Bias ,

n . N
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PM CV: Training sites = PM,  from continuous FEM and daily filter; Prediction sites = 1-in-3-day and 1-in-6-day filter sites.
The CV bias quantifies the error in the fused surfaces on the 2 out 3 days with the reduced PM network.

wEPA
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How different are the Fused and CMAQ PM, ; CV errors?

Seasonal Average | EQUATES DS — Observed PM, | - | EQUATES CMAQ — Observed PM, |
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0.5 to 2.0 pg/m3 average decrease in absolute estimation error using DS compared to ‘raw’ CMAQ output.
wEPA
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How different are the EQUATES and CDC CMAQ PM, ; CV errors?

Seasonal Average | EQUATES — Observed PM, | - | CDC — Observed PM2, .|
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* EQUATES error is 1-2 ug/m3 Iowerythan CDC error for 2002-2012 in part due differences in CMAQ version.
 EQUATES uses CMAQv5.3.2 and the CDC simulations use CMAQ v4.6-v5.0.2 for 2002 -2012.

There were substantial improvements in the modeled PM, . seasonal patterns in CMAQv5.1 — CMAQvS5.3.

wEPA
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How different are the EQUATES and CDC Fused PM, ; errors?

Monthly Average | EQUATES DS — Observed PM, | - | CDC DS — Observed PM, .|

ug/m?3

0.2+

== Spring

| Summer
\/ - = Fal|
—0.2'

2002 -
2003 -
2004 -
2005«
2006 -
2007 -
2008 -
2009 -

2010~
2011 -
2012~
2013 -
2014 .
2015«
2016
2017 -
2018 -
2019~

EQUATES DS has slightly lower (.05 - 0.2 ug/m3) seasonal average error for 2002-2006 in Spring,
Summer, Fall. These are the years where the CDC DS used a merged 12EUS and 36US domain.
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Comparison of Daily Maps
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EQUATES - CDC CMAQ MDAS8 O3
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EQUATES vs CDC CMAQ MDAS8 Ozone

PRV
July 1, 2002 example -
« Large differences in EQUATES and CDC . | *
CMAQ estimates due to differences in | K
model inputs and configuration. . "
- ] 60
. . ;5 | 50
 EQUATES does a better job capturing . “
peak ozone throughout the domain. | =
" : + ACS 20 *Observed and
g s Naps ., modeled color scales
122 118 -114 -110 106 -102 98 94 90 B6 B2 -78 T4 -70 66 are Sllghtly different

Obs Summary: [ min, 25th %, 50th %, 75th %, max ]
[9.8, 42, 58, 73, 110]

\e’EPA Office of Research and Development 27




EQUATES DS MDAS8 O3 CDC DS MDAS8 O3 EQUATES - CDC DS MDAS8 O3

50 T 5 50w : Ce— e

454 451
S 40- 4041 § PPb
P [
I
d

30- 30-

25 h 25 -

120 -110 -100  -90 —80 70 120 -110 -100  -90 —80 70 120 -110 -100  -90 —80 70

EQUATES vs CDC \baiierieg s (July 1, 2002 example)

* Although EQUATES DS and CDC DS average cross validation errors were very similar, we still see
substantial differences in the daily fused spatial fields(on the order of + 20ppb for ozone).

— The CMAQ data used in the data fusion does matter.

e Largest widespread differences in the Northern Rockies and Southwest where the ozone monitoring
network is sparse.

* Inthese cases, improvements in the EQUATES CMAQ estimates, compared to CDC, will play a larger
role in improving the fused surfaces.

\e’EPA Office of Research and Development 28




CDC DS Bias: MDAS8 03 on 07/01/2002

EQUATES CMAQ Bias: MDA8 03 on 07/01/2002 ooy
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MDAS8 Ozone Bias N !
July 1, 2002 example B ’
* Large over and underestimates in EQUATES CMAQ MDAS O,. 1 ’
. = 5
* Fused CDC and EQUATES surfaces reduce the bias (75% of :
. . . @ 10
the sites are within * 3ppb) .
@ | -15
* Fused surfaces can still have large bias (min = -25ppb, max= |
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EQUATES CMAQ MDAS8 O3 CDC CMAQ MDAS8 O3

EQUATES - CDC CMAQ MDAS8 O3
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EQUATES vs CDC CMAQ MDAS8 Ozone

July 1, 2018 example

* EQUATES and CDC CMAQ surfaces are much
more similar than in 2002, due to similar model
inputs and configuration.

e Both simulations miss peak ozone levels in the
NE, Midwest, CA, and SW.

* EQUATES has more low bias in CA and the SW
than the CDC simulation.
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Obs Summary: [ min, 25th %, 50th %, 75th %, max ]
[13. 34, 43, 54, 95]
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EQUATES DS MDAS8 O3
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EQUATES vs CDC \eaviieries (July 1, 2018 example)

e Downscaled fused surfaces are much more similar than in 2002.

CDC DS MDAS8 O3 EQUATES - CDC DS MDAS O3
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» Differences in the underlying CMAQ Modeling still show up as differences in the fused surfaces.
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Main Take Aways

* As expected, data fusion dramatically reduces bias (and increases
correlation) in spatial fields of PM, . and MDAS8 ozone in most cases.

DS fused ozone and PM, . are an excellent estimate of air quality and
should be preferentially selected over ‘raw’” model output for health
studies when possible.
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Main Take Aways

 Cross validation analysis shows DS fused surfaces can still have bias.

* What does this mean for applications using fused data, especially
epidemiological studies?

Recommend including evaluation of any model-based product in application
studies. The implications of model bias/error on results will depend on the
application including the regions, years, seasons of the study.
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Main Take Aways

* Fused surfaces from two very different CMAQ simulations have very
similar CV evaluation metrics when average over space and time.

* Large differences can still exist in the daily surfaces, particularly
away from monitoring locations.

EQUATES DS provides the advantage of a consistent domain, model
inputs and settings for all years (e.g., no discontinuities in early
simulation years).
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Next Steps

* Public release of EQUATES DS fused PM2.5 and MDAS O, daily

estimates (datasets for 12km x 12km gridded data, 2010 census
tracts, 2010 zip codes).

* Release will include documentation of the CV methods and evaluation
and comparison with CDC DS across regions and seasons.
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Questions?

? 7?

Kristen Foley (foley.kristen@epa.gov) Adam Reff (reff.adam@epa.gov)

?'Y?*
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