

Advancing sectoral emission estimates using TEMPO observations

Zhen Qu

North Carolina State University

zqu5@ncsu.edu CMAS, 10/23/2024

With Nana Wu and Carolina Nowlan

NC STATE UNIVERSITY **QU GROUP ATMOSPHERIC CHEMISTRY MODELING AT NC STATE**

Air Quality and Atmospheric **Chemistry Model**

Satellite Observations

Data-driven Frameworks

Bottom-up estimate

Emission = species emission factor × activity

Bottom-up estimate

Emission = species emission factor × activity

(Christiansen et al., 2019)

Top-down estimate

Infers emissions from observations

4

LEO Satellite

Using Observations to Estimate Emissions Through Inverse Methods⁵

Top-down estimate

Using Observations to Estimate Emissions Through Inverse Methods

Using Observations to Estimate Emissions Through Inverse Methods

Using Observations to Estimate Emissions Through Inverse Methods

· Seeks solution iteratively

- · Gradient based optimization
- Adjoint model calculates the sensitivity of cost function w.r.t. state vector

Observational Term

Geostationary Satellite TEMPO Enables Daytime Hourly Monitoring of NO₂

- NO₂ retrievals available from Aug 2023

12

- Daytime hourly data coverage
- Footprint: 2.1 km \times 4.7 km
- TEMPO observations can better identify source sectors leveraging the different diurnal variations of each source

 $SCD = VCD \times AMF$

GEOS-Chem simulations with EQUATES inputs underestimate NO_2 compared to observations.

13

CMAQ simulations show consistent underestimates compared to observations.

(By Postdoc Nana Wu)

Consistent biases using (b) all TEMPO data & (c) only data at 13:00 LT \rightarrow Discrepancies in (a) & (b) are due to retrieval differences, not data coverage

The differences are attributed to the different magnitudes of scattering weights in these two retrievals.

Posterior / prior Ratio of Emissions (Sep 1, 2023)

NO₂ observations suggest underestimates in EQUATES emissions. Is it true???

Posterior / prior Ratio of Emissions (Sep 1, 2023)

TEMPO posterior NO_x emissions are 47% higher than the EQUATES emissions
TROPOMI posterior NO_x emissions are 56% higher than TEMPO posterior over CONUS

Unexpected slowdown of US pollutant emission reduction in the past decade

Zhe Jiang^{a,b,1}, Brian C. McDonald^{c,d}, Helen Worden^a, John R. Worden^e, Kazuyuki Miyazaki^f, Zhen Qu^g, Daven K. Henze^g, Dylan B. A. Jones^h, Avelino F. Arellanoⁱ, Emily V. Fischer^j, Liye Zhu^{j,2}, and K. Folkert Boersma^{k,I}

^aAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301; ^bSchool of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; ^cChemical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305; ^dCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309; ^eJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91009; ^fResearch and Development Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan; ^gDepartment of Mechanical Engineering, University of Colorado Boulder. Boulder, CO 80309: ^hDepartment of Physics. University of Toronto, ON M55 1A7, Canada: ⁱDepartment of Hydrology and

(Jiang et al., 2018)

US COVID-19 Shutdown Demonstrates Importance of Background NO₂ in Inferring NO_x Emissions from Satellite NO₂ Observations

 TROPOMI tracks the change in Mar-Jun at low background sites but only reductions in Mar-Apr at other sites.

(*Qu et al.,* 2021)

Unique Emission Profile for Each Source

Sector-based Inversion: Independent Adjustments for Each Source

Species-based inversion: optimize total NO_x, SO₂, and CO emissions.

Sector-based inversion: optimize activity rates of each sector.

E = species emission factor × activity

Sector-based Inversion: Independent Adjustments for Each Source

22

Species-based inversion: optimize total NO_x, SO₂, and CO emissions.

Sector-based inversion: optimize activity rates of each sector.

E = species emission factor × activity

Emission adjustments (Top-down – bottom-up, Jan, 2010)

Bottom-up emissions: overestimate underestimate

Sector-based Inversion: Independent Adjustments for Each Source

23

Positive adjoint sensitivity: emissions should decrease to match observations

Summary

Integrating daytime hourly TEMPO NO2 observations into a sectorbased inversion framework have the potential to better inform emission adjustments from each source sector and evaluate bottom-up inventories at the process level.

- TROPOMI-constrained NOx emissions show upward adjustments compared to EQUATES, whereas TEMPO constraints show mixed adjustments. The differences are attributed to different magnitudes of scattering weights in these two retrievals.
- A sector-based inversion framework attributes the underestimates of emissions mostly to the transportation and energy sectors.

NO₂ Discrepancies Are Caused by Scattering Weight

Larger scattering weight (SCW) from TEMPO leads to larger simulated NO2 SCDs and high biases compared to observations.

26

CMAQ simulations show consistent comparisons with GEOS-Chem.

US COVID-19 Shutdown Demonstrates Importance of Background NO₂ in Inferring NO_x emissions from Satellite NO₂ Observations

