

Modeling $PM_{2.5}$ Sulfate (SO₄²⁻) and Hydroxymethanesulfonate (HMS) in Fairbanks, Alaska, during the ALPACA field campaign

Kathleen Fahey¹, Robert Gilliam¹, George Pouliot¹, Deanna Huff², Golam Sarwar¹, Sara Farrell¹, Havala Pye¹, Benjamin Murphy¹

Fairbanks has high wintertime PM₂₅

Fairbanks is a serious nonattainment area for the 24-hr PM_{2.5} NAAQS

- High local emissions coupled with poor dispersion and strong temperature inversions lead to build-up at the surface
- PM_{2.5} during episodes consists mostly of organic carbon and **SO₄²⁻**

The Fairbanks Alaskan Layered Pollution and Chemical Analysis (ALPACA) winter air quality study was undertaken in early 2022

- Designed to better understand what processes/sources/chemistry lead to high PM concentrations in an extremely cold and dark environment
- Extensive suite of meteorological and chemical measurements collected in and around Fairbanks in combination with pre- and post- campaign modeling

Models underestimate SO_4^{2-} under cold, dark conditions

Major SO₂ oxidation reaction pathways are unable to capture high SO_4^{2-} observations during periods of low photochemical activity

• Fairbanks moderate SIP: Avg SO_4^{2-} obs (mod) = 6.2 (2.1) μ gm⁻³

Potential reasons for this model observation discrepancy:

- Heterogeneous sulfur chemistry in/on aerosol is not included in most models
- Typically minor reactions in clouds may be important depending on pH, oxidant levels
- Misidentification of other sulfur species (e.g., HMS) as sulfate

CMAQ particulate sulfur chemistry updates

Sulfur-tracking for modeled PM Sulfur vs. observed SO₄²⁻

There are two AQS PM speciation sites in the Fairbanks area: NCore (downtown Fairbanks) and Hurst Road (North Pole). Here we show modeled SO_4^{2-} (or SO_4^{2-} + HMS) and routine measurements. Observations provided by ADEC.

First row: model/obs SO₄²⁻ and HMS at NCore (left) and Hurst Road (right). The bars represent model SO_4^{2-} + HMS broken down by process, the points represent SO_4^{2-} observations, and the dashed line represents the SO₄²⁻ predicted by the base model without multiphase sulfur chemistry updates. **Middle row:** SO₄²⁻ formed in aerosol water separated by oxidation reaction. **Bottom row:** SO_4^{2-} formed in cloud water separated by oxidation reaction.

Tags: AETOT = secondary SO_4^{2-} formed in aerosol water, AHMS = HMS formed in aerosol and cloud water, AQTOT = secondary SO_4^{2-} formed in cloud water, EMIS = primary SO_4^{2-} emissions, GAS = secondary SO_4^{2-} formed in the gas phase, and ICBC = SO_4^{2-} from initial/boundary conditions.

U.S. Environmental Protection Agency Office of Research and Development

Kathleen Fahey I fahey.kathleen@epa.gov ¹Office of Research and Development, U.S. Environmental Protection Agency; ²Alaska Department of Environmental Conservation (ADEC)

WRF/SMOKE/CMAQ modeling platform for ALPACA

Extended Sulfur Tracking Method (STM)

omain	1.33-km horiz. resolution, 199x199 cells, 38 vert. layers
	MCIP-processed WRFv4.1.1 meteorology; WRF model
	configuration optimized for ALPACA, leveraging rich dataset
eteorology	collected during the field study (Gilliam et al., 2023)
	Sector-separated CMAQ-ready emissions for Jan-Feb 2022
	generated with SMOKE. 2022 gridded space heating inventory
	2019 inventories and surrogates for onroad, airports, nonroad
	and other area sectors, and 2020 inputs for point sources
	provided by ADEC. Point sources are updated with ALPACA
	operations information when available (provided by S. Arnold
nissions	(U. of Leeds)).
/BCs	2016 hemispheric CMAQ seasonal average
mulations	Jan 2 - Feb 28, 2022
Base	Standard CMAQ configuration with STM
	KMT cloud chemistry and heterogeneous chemistry updates
Hetchem	with extended STM

E	Base ca	ase	
NCore			
	NME NMB		
Spcs	(%)	(%)	
SO4	58.9	-38.8	
ОС	45.1	13.6	
ЕС	40.2	-11.9	
NH4	70.5	-46.5	
NO3	35.1	-17.6	
Hurst Road			
	NME	NMB	
Spcs	(%)	(%)	
SO4	50.7	-47.7	
ОС	54.8	-45.3	
EC	60.3	-57.4	
NH4	46.7	-18.7	
NO3	58.3	27.6	

Summary

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

SO₄²⁻ and HMS in downtown Fairbanks

Comparison of modeled and observed SO_4^{2-} (top) and HMS (bottom) in downtown Fairbanks. Modeled HMS is shown for high and low HMS production rates (Song et al., 2021) as well as their average. Filter analyses developed and provided by K. Dingilian and R. Weber (GTech)

CMAQ was updated with heterogeneous sulfur chemistry in aerosol water, including the production and loss of HMS, which may sometimes be misidentified as sulfate during routine PM composition analysis • The update improves model-obs comparisons of sulfate for the ALPACA period, and model HMS compares well with measurements in magnitude and timing • Multiphase (cloud/fog/aerosol) sulfur chemistry is a significant contributor to modeled PM_{2.5} sulfur in Fairbanks where the cold, dark conditions dampen the existing secondary sulfate pathways in the standard configuration of CMAQ • The production of HMS and sulfate from S(IV) reactions with HCHO, NO₂, HNO₄, and O₂ (Fe³⁺, Mn²⁺ catalyzed) are predicted to be most impactful here