

### On the impacts of grid resolution on the estimates of marginal societal health benefits of emissions abatement

#### Anas Alhusban, ShunLiu Zhao, Amir Hakami (Carleton University) Petros Vasilakos, Ted Russell (Georgia Tech)

#### *Outline:*

#### ➤Topics will be covered:

- Motivation
- Background
- Methodology
- Results
- Conclusion and limitations

#### Motivation

#### ➤This study aims to:

- Evaluate the consistency of the estimated values of marginal health benefits of primary particulate matter (PM<sub>2.5</sub>) and precursor emissions abatement across various horizontal grid spacings for regional scale studies conducted at a lower resolution due to computational constraints to ensure their robustness for policy making purposes.
- Determine the grid-spacing requirements for urban scale studies to be sufficiently resolved for local decision making.
- Examining the extent of sub-grid variability of marginal health benefits estimates that are present within coarser resolutions.

### Background:

Effects of grid resolution on air pollution health impacts estimates

Model's resolution (grid spacing) affect health benefits estimates by affecting:

Meteorology:

Convective systems  $\rightarrow$  Wet deposition , Winds and local circulation  $\rightarrow$  Transport, Boundary layer height  $\rightarrow$  Pollutant mixing

- Emissions:
  - Emissions distribution and peak locations
  - Artificial dilution
- Numerical accuracy:
  - Numerical noise, grid imprints
- Exposure:
  - Population distribution

### Methodology: Study parameters

|                         | 36 km                                                                                                         | 12 km                                                   | 4 km                                                                | 1 km                                                               |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Spatial Extent          | Contiguous US, parts o                                                                                        | of Canada, and Mexico                                   | LA4: ~Southern California<br>NY4: NYC, NJ, and New Haven            | LA1: Los Angeles<br>NY1: NYC                                       |  |  |
| Meteorology             | ERA5 reanalysis from ECMWF, resolution 0.25*0.25 degrees, WRF v3.9.1                                          |                                                         |                                                                     |                                                                    |  |  |
| Emissions               | Based on U.S. Na                                                                                              | tional Emission Inventory Collab                        | orative (NEIC) 2016 emissions mo                                    | odelling platform                                                  |  |  |
| Study Period            | 2016: Full Year                                                                                               | 2016: 4 episodes each 2<br>weeks in Feb, May, Aug, Nov. | 2016: 2 episodes each 2<br>weeks in Aug., Feb. (ongoing)            | 2016: 1 episode1, 2 weeks in<br>Aug., Feb (ongoing)                |  |  |
| Domain Grid Description | otion Rows: 148 ; Columns:172 Rows: 299 ; Columns:459<br>Layers: 35 Layers: 35                                |                                                         | LA4: Rows: 156 ; Cols:165<br>NY4: Rows: 127; Cols:127<br>Layers: 35 | LA1: Rows: 112 ; Cols:112<br>NY1: Rows: 104 Cols:104<br>Layers: 35 |  |  |
| СТМ                     | CMAQ-ADJ v5.0 (Zhao, et al. 2020)                                                                             |                                                         |                                                                     |                                                                    |  |  |
| Cost function           | Monetized mortality (PM <sub>2.5</sub> ) using Global Exposure Mortality Model (GEMM) (Burnett et al. , 2018) |                                                         |                                                                     |                                                                    |  |  |
| Boundary Conditions     | FWD only: Hemispheric                                                                                         | 36 km 12 km                                             |                                                                     | 4 km                                                               |  |  |

### Methodology: High resolution Modelling Domains



```
Methodology:
health impact estimation
```

The Adjoint cost function (J) for this study is defined as the societal burden due to  $PM_{2.5}$  mortality.

Location specific benefit-per-ton estimates (BPT): valuations of the health impacts from exposure to fine particulate matter resulting from emissions of one ton of a pollutant (primary  $PM_{2.5}$ , NOx,  $SO_2$ , and  $NH_3$ ).

$$\frac{BPT\left(\frac{\$}{ton}\right) \thickapprox}{(Health \ Outcome)} \times \frac{(Health \ Outcome)}{\Delta(Concentrations)} \times \frac{\Delta(Concentrations)}{\Delta(ton \ of \ emissions)}$$

#### RESULTS: Effect of resolution on BPTs (NYC: Primary PM<sub>2.5</sub>)



#### **RESULTS**: Effect of resolution on BPTs (LA: Primary PM<sub>2.5</sub>)



1 km

4 km

12 km

#### **RESULTS**: Effect of resolution on BPTs (NYC: $NO_x$ )



1 km

# RESULTS: Effect of resolution on BPTs (LA: $NO_x$ )



#### RESULTS: Effect of resolution on BPTs (NYC: NH<sub>3</sub>)



### RESULTS: Effect of resolution on BPTs (LA: NH<sub>3</sub>)



1 km

4 km

12 km

36 km

#### RESULTS: Health Burden estimates (1/2)

| Burden estimates for the New York at various resolutions (\$ Billions) |            |       |           |       |       |  |
|------------------------------------------------------------------------|------------|-------|-----------|-------|-------|--|
| Species                                                                | Resolution | 36 km | 12 km     | 4 km  | 1 km  |  |
| PM <sub>2.5</sub>                                                      |            | 10.82 | 14.56     | 13.46 | 13.96 |  |
| NH <sub>3</sub>                                                        |            | 0.28  | 0.55      | 0.60  | 0.70  |  |
| NOx                                                                    |            | 0.16  | 0.12      | 0.11  | 0.16  |  |
| SO <sub>2</sub>                                                        |            | 0.27  | 0.34 0.43 |       | 0.52  |  |
| Total                                                                  |            | 11.52 | 15.61     | 14.60 | 15.34 |  |

HEALTH BURDEN =  $\sum_{i=0}^{N} BPT_i * Emis(\frac{ton}{yr})_i$ 

#### RESULTS: Health Burden estimates (2/2)

| Burden estimates for the Los Angeles at various resolutions (\$ Billions) |  |                      |       |       |       |  |  |
|---------------------------------------------------------------------------|--|----------------------|-------|-------|-------|--|--|
| Species Resolution                                                        |  | 36 km                | 12 km | 4 km  | 1 km  |  |  |
| PM <sub>2.5</sub>                                                         |  | 12.06                | 11.33 | 12.27 | 12.83 |  |  |
| NH <sub>3</sub>                                                           |  | 1.44                 | 2.00  | 2.92  | 5.50  |  |  |
| NOx                                                                       |  | 1.38                 | 2.13  | 3.48  | 4.84  |  |  |
| SO <sub>2</sub>                                                           |  | SO <sub>2</sub> 0.46 |       | 0.825 | 1.04  |  |  |
| Total                                                                     |  | 15.34                | 16.42 | 19.49 | 24.21 |  |  |

HEALTH BURDEN = 
$$\sum_{i=0}^{N} BPT_i * Emis(\frac{ton}{yr})_i$$

#### RESULTS: Aggregated BPTs

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |                                                       |              |              |            | 25 26 27 28 29 30 31 32 33 34 35 36 |            |                              |                  |                   |            |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|--------------|------------|-------------------------------------|------------|------------------------------|------------------|-------------------|------------|
| 1 1<br>2 1<br>3 1                                                                                  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 4 km<br>cell | 4 km<br>cell |            | -                                   | P          | M <sub>2.5</sub> domain-wide | performance agai | nst aggregated 1k | m          |
| 5<br>6<br>7<br>8                                                                                   | 4 km<br>cell                                          | 4 km<br>cell | 4 km<br>cell | 12 km cell | 12 km cell                          | City       | N                            | YC               | L                 | A          |
| 9<br>10<br>11<br>12                                                                                | 4 km<br>cell                                          | 4 km<br>cell | 4 km<br>cell |            |                                     | Resolution | R                            | МВ               | R                 | МВ         |
| 13<br>14<br>15<br>16<br>17                                                                         |                                                       | 12 km cell   |              | 12 km cell | 12 km cell                          | 36 km      | 0.589                        | -\$20,38         | 0.526             | -\$104,189 |
| 19<br>20<br>21<br>22                                                                               |                                                       |              |              |            | 12 Millen                           | 12 km      | 0.942                        | -\$21,431        | 0.745             | -\$84,945  |
| 23<br>24<br>36 12 km cell 12 km cell 12 km cell 4 km<br>36 km Grid-cell                            |                                                       |              |              |            | 12 km cell                          | 4 km       | 0.943                        | -\$68,515        | 0.829             | -\$27,050  |

The comparison is carried out between averaged BPTs of 1-km grid cells making up the coarser resolution grid cell and the said coarser cell's BPT





## Comparison with Other BPT Estimates (ACS, county level 12km)



# Comparison with Other BPT Estimates (ACS, county level 12km)



## Comparison with Other BPT Estimates (ACS, county level 12km)



#### Conclusions:

- Sensitivity analysis to assess the impacts of horizontal grid resolution on societal health benefits of emissions abatement can help in boosting the confidence in regional scale studies.
- ➤12km horizontal grid spacing can be sufficient to estimate the total health burden of PM<sub>2.5</sub> in a metropolitan area in a regional scale study as higher grid resolution runs are not feasible.
- ➢ For decisions making on control strategies at the urban level, high resolution is required to capture local features of location specific BPTs.

#### Limitations:

- ➤The study is ongoing, results presented here only represent the summer season, seasonal or even interannual variation might change the conclusions drawn here.
- BPTs are tangents to the atmospheric response surface and are based on an implied assumption of linearity.
- Uncertainties due to epidemiology, modelling of atmospheric processes, meteorological fields and emission's inputs.

#### THANK YOU!

- Special thanks to:
- Health Effects Institute (HEI)
- Alliance Canada formerly known (ComputeCanada)

#### References:

- Palau, J. L., Pérez-Landa, G., Diéguez, J. J., Monter, C., & Millán, M. M. (2005). The importance of meteorological scales to forecast air pollution scenarios on coastal complex terrain. In Atmos. Chem. Phys (Vol. 5). <u>www.atmos-chem-phys.org/acp/5/2771/SRef-ID:1680-7324/acp/2005-5-2771EuropeanGeosciencesUnion</u>
- Pan, S., Choi, Y., Roy, A., & Jeon, W. (2017). Allocating emissions to 4 km and 1 km horizontal spatial resolutions and its impact on simulated NOx and O3 in Houston, TX. Atmospheric Environment, 164, 398–415. https://doi.org/10.1016/j.atmosenv.2017.06.026
- Rao, T., Luo, H., Astitha, M., Hogrefe, C., Garcia, V., & Mathur, R. (2020). On the limit to the accuracy of regional-scale air quality models. Atmospheric Chemistry and Physics, 20(3), 1627–1639. https://doi.org/10.5194/acp-20-1627-2020
- Weisman, M. L., Skamarock, W. C., & Klemp, J. B. (1997). The Resolution Dependence of Explicitly Modeled Convective Systems.
- Zhao, S., Russell, M. G., Hakami, A., Capps, S. L., Turner, M. D., Henze, D. K., Percell, P. B., Resler, J., Shen, H., Russell, A. G., Nenes, A., Pappin, A. J., Napelenok, S. L., Bash, J. O., Fahey, K. M., Carmichael, G. R., Stanier, C. O., & Chai, T. (2020). A multiphase CMAQ version 5.0 adjoint. *Geoscientific Model Development*, 13(7), 2925–2944. https://doi.org/10.5194/gmd-13-2925-2020



#### Methodology: Episode selection

We choose seasonal episodes based on an anomaly analysis of the entire year (by season). To conduct our anomaly analysis, we generate adjoint-based BPTs for the entire year at a coarser resolution (36 km) where yearlong simulations are possible.

$$f_{BPT,t} = \frac{100}{N_{grids} \times N_{spc}} \sum_{spc} \sum_{grids} \frac{(BPT_{grid,spc,t} - BPT_{grid,spc,season})}{BPT_{grid,spc,season}}$$

$$f_{burden,t} = \frac{100}{N_{grids}N_{spc}} \sum_{grids} \frac{(\sum_{spc} BPT_{grid,spc,t}E_{grid,spc,t} - \sum_{spc} BPT_{grid,spc,season}E_{grid,spc,season})}{\sum_{spc} BPT_{grid,season} \times E_{grid,season}}$$

$$min. \left(\frac{f_{BPT,t} - f_{BPT,t,min}}{f_{BPT,t,min}} + \frac{f_{burden,t} - f_{burden,t,min}}{f_{burden,t,min}}\right).$$

#### Methodology: Episode selection





$$J = V_{SL} \sum_{i} M_{0,i} \times P_i (1 - e^{-\theta T(z)}),$$

Where:  $\theta = 0.1231, \alpha = 1.5, \mu = 10.4, \nu = 25.9, \text{ and } cf = 2.4 \ \mu g/m3$ 



where,

$$T(z) = \log\left(1 + \frac{z}{\alpha}\right)\omega(z),$$
$$\omega(z) = \frac{1}{1 + e^{-(z-\mu)/\nu}},$$
$$HR = e^{\theta T(z)}$$

and

 $z = MAX(0, PM_{2.5} - cf)$ 

#### RESULTS: Health Burden estimates (3/2)

| Burden estimates for the city of Los Angeles only at various resolutions |  |                      |       |      |      |  |  |
|--------------------------------------------------------------------------|--|----------------------|-------|------|------|--|--|
| Species Resolution                                                       |  | 36 km                | 12 km | 4 km | 1 km |  |  |
| PM <sub>2.5</sub>                                                        |  | 3.98                 | 4.00  | 4.17 | 4.29 |  |  |
| NH <sub>3</sub>                                                          |  | 0.40                 | 0.70  | 1.01 | 1.88 |  |  |
| NOx                                                                      |  | 0.54                 | 0.79  | 1.18 | 1.67 |  |  |
| SO <sub>2</sub>                                                          |  | SO <sub>2</sub> 0.23 |       | 0.38 | 0.47 |  |  |
| Total                                                                    |  | 5.15                 | 5.99  | 6.74 | 8.31 |  |  |

HEALTH BURDEN =  $\sum_{i=0}^{N} BPT_i * Emis(\frac{ton}{yr})_i$ 

# RESULTS: Effect of resolution on BPTs (LA: $SO_2$ )



#### RESULTS: Effect of resolution on BPTs (NYC: SO<sub>2</sub>)



#### RESULTS: Comparison with Other BPT Estimates

| RCM models vs CMAQ-ADJ (12km) statistics at the county level |                   |                 |                 |                 |  |  |
|--------------------------------------------------------------|-------------------|-----------------|-----------------|-----------------|--|--|
| Model                                                        | PM <sub>2.5</sub> | NH <sub>3</sub> | NO <sub>x</sub> | SO <sub>2</sub> |  |  |
| AP2                                                          | 0.772             | 0.365           | 0.002           | 0.223           |  |  |
| EASIUR                                                       | 0.819             | 0.696           | 0.086           | 0.062           |  |  |
| InMAP                                                        | 0.755             | 0.409           | 0.027           | 0.088           |  |  |
| AVG3                                                         | 0.903             | 0.513           | 0.061           | 0.195           |  |  |