

Advancing sectoral emission estimates of NO_x, SO₂, and CO using satellite observations

Zhen Qu

Assistant Professor North Carolina State University zqu5@ncsu.edu CMAS, 10/17/2023

With Daven Henze, Helen Worden, Nana Wu, Zhe Jiang, Benjamin Gaubert, Nicholas Theys, Wei Wang, Can Li, Yi Wang, Jun Wang

Sources of SO₂, NO_x, and CO

Power Plant

Fossil Fuel Combustion

Soil

Biomass Burning

Lightning

Volcano

Bottom-up estimate

Emission = species emission factor × activity

Top-down estimate

Infers emissions from observations

3

LEO Satellite

Top-down estimate

 NO_x emissions (2010) Top-down – bottom-up Bottom-up HTAP inventory 0.46 [TgN] 0.15 0.30 0.00-0.05-0.020.05 [TgN] 0.02

Spatial Distribution

(Qu et al., 2020)

11

Top-down estimates correct bottom-up emissions and assist in interpreting simulations with these emission inputs.

Top-down NO_x Estimates Reflect Emission Regulations

Trend

Top-down NO_x emissions (2005-2016)

(Qu et al., 2020)

12

China: peak in 2011 reflects regulations since the 12th Five Year Plan

Optimize Sectoral Profiles of Emissions

Similar total emissions, different profiles

True emissions Bottom-up estimates

Unique Emission Profile for Each Source

Need Observations of Multiple Species

Sector-based Inversion: Independent Adjustments for Each Source

Sector-based Inversion: Independent Adjustments for Each Source

- NO_x: < HTAP emissions by 20-30%
- SO₂: HTAP emissions are overestimated in India
- CO: >HTAP estimates by 43-62% in China and 25-38% in India

(Qu et al., 2022)

Sector-based Posterior Show the Best Agreement with Measurements

(*Qu et al.*, 2022)

²⁰

How Different Sources Respond to Regulations in China?

Sectoral Contribution

Top-down emissions in China (Jan, 2005-2012)

- Industry and energy sectors drive NO_x & SO₂ trends
- Residential and industry sectors drive CO trends

(Qu et al., 2022)

Emissions Continuously Increase in India

- Energy sector drives NO_x & SO₂ trends
- Residential sector drives CO trends

(Qu et al., 2022)

Observing System Simulation Experiments (OSSEs) over CONUS

Observing System Simulation Experiments (OSSEs) over CONUS

Observing System Simulation Experiments (OSSEs) over CONUS

Aura 272.5 sec. 103 sec. 259.5 sec. 101 sec.

Summary

Top-down emissions from a newly developed sector-based inversion framework lead to the best agreement with independent surface measurements and provide a new perspective to evaluate bottom-up estimates by activities.

- This new inversion attributes the drivers of the peak of Chinese SO₂ (2007) and NO_x (2011) emissions to industry and energy activities, and CO (2007) to residential and industry emissions.
- In India, the inversion attributes NO_x and SO₂ trends mostly to energy and CO trend to residential emissions.
- OSSEs are designed to evaluate how much this new framework can improve sectoral emission estimates in the US.

We are recruiting Ph.D. students!

NC STATE

Marine, Earth and Atmospheric Sciences North Carolina State University zqu5@ncsu.edu