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1. INTRODUCTION 
 

Accurate prediction of Precipitable Water 
Vapor (PWV) is essential for numerous 
applications such as weather forecasting, 
hydrological modeling, and climate studies. 
However, conventional methods of determining 
PWV require expensive instruments, making them 
impractical in many situations. Existing methods of 
predicting PWV use data and computation 
expensive frameworks like Long-Short-Term-
Memory (LSTM) networks, artificial neural 
networks (ANN) and genetic algorithms (GA) [1], 
[2]. This work presents a novel approach to 
predicting PWV that demands reduced data input 
and computational resources, making it more cost-
effective and accessible.  

 
The proposed method employs explainable 

machine learning algorithms to predict PWV with a 
high accuracy. Specifically, we use tree-based 
regression models coupled with model 
interpretation tools to predict PWV from a small 
set of easily measurable or readily available 
meteorological variables such as latitude, 
longitude, elevation, and humidity. The proposed 
method was trained using meteorological data 
from a limited number of United States locations 
and achieved high accuracy on unseen locations. 
The results suggest that the proposed method can 
provide a cost-effective and accessible solution for 
predicting PWV, making it a valuable tool for 
various applications. 

 

2. DATA 
 
Data on precipitable water vapor along with 

other spatial information and physical quantities 
such as relative humidity, solar zenith angle, 
latitude, longitude, wind direction, and wind speed, 
among others, was collected from the Physical 
Solar Model (PSM) version 3 of the National Solar 
Radiation Database (NSRDB). We collected data 
from 1998 – 2022 with a spatial resolution of 4km 
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and temporal resolution of 30 minutes from the 
United States of America (USA). In total, 25 
features were extracted from the source. 

 
The 17 features originally extracted from each 

location of the dataset are Air Temperature, 
Clearsky DHI, Clearsky DNI, Clearsky GHI, Cloud 
Type, Dew Point, DHI, DNI, Fill Flag, GHI, Relative 
Humidity (RH), Solar Zenith Angle, Surface 
Albedo, Surface Pressure, Total Precipitable 
Water (PW), Wind Direction, and Wind Speed. 
Additional spatial (Latitude, Longitude, and 
Altitude) and temporal (Year, Month, Day, Hour, 
and Minute) features were also collected.  

 
The PSM v3 model included data for 23 years 

from 3268 unique locations. For each location, 
there were 402,960 data points, and in total, there 
were 1,316,873,280 data points. Given the size of 
this dataset, utilizing it in its entirety was 
computationally expensive. As such, after 
empirical observations, we decided to sample 
8,395 data points from each location to, on 
average, capture data from every day for each 
location chosen. For our training data, we sampled 
30 random locations, and for our testing data, we 
sampled 10 random locations. The decision to 
choose a small and random set of locations was 
driven by our motivation of building a robust, 
inexpensive, and highly generalizable model. 

 

 

Fig. 1. The train (blue) and test (red) locations 

To simplify temporal information, the five 
temporal features were simplified into three. The 
Day (of the Month) and Month (of the Year) 
features formed the Day (of the Year) feature and 
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the Minute (of the Hour), and Hour (of the Day) 
features formed the Minute (of The Day) feature. 

 
Moreover, Specific Humidity (SH) was also 
calculated for each data point as a function of 
Relative Humidity, Temperature, and Pressure [3]. 

 
3. METHODOLGY 

 
First, we build a linear regression model to act 

as the baseline. Then, we employed Random 
Forest regression and Local Interpretable Model-
agnostic Explanations (LIME) [4] sequentially to 
create a robust, low-cost, and generalizable 
model.  

 
The choice of Random Forest regression was 

driven by its capacity to prevent overfitting and 
yield reliable results without hyperparameter 
tuning, making it suitable for generalization. 

 

Fig. 2. Model development process 

3.1 BASELINE 
 
The baseline model chosen was a single-

variate linear regression model with Specific 
Humidity as the independent variable and 
Precipitable Water as the dependent variable. 

 

 

Fig. 3. Regression line plotted on the train dataset 

3.2 SP-LIME 
 
To identify relevant features, we built a 

Random Forest regression model (FRF) with all 22 
features. As the size of FRF’s training sample was 
201,480, running SP-LIME on all training 
instances was impractical. Instead, we empirically 
chose a sample size of 2,000, and produced 10 
unique explanations. These explanations allowed 
us to calculate the “impact” of each of these 
variables—either positive or negative—on the final 
regression.  

 

Fig. 4. An example of a positive explanation 

 

Fig. 5. An example of a negative explanation 

These impact values combined with domain 
knowledge such as ease of measurement and 
physical relevance led us to choose 10 unique 
variables that formed the basis of our last and final 
model, the Compact Random Forest (CRF). 

 

3.3 COMPACT RANDOM FOREST 
 
The features chosen for the CRF model are 

Specific Humidity, Dew Point, Cloud Type, Day 
Number, Fill Flag, Wind Direction, Latitude, 
Longitude, Elevation, and Time. These features 
were used to train a Random Forest regression 
model, which not only improved the baseline 
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drastically but also trained much faster than the 
FRF model.  

 
The effectiveness of each of the 10 CRF 

variables was reinforced by Partial Dependence 
Plots. While Specific Humidity had the greatest 
impact on Precipitable Water across the full range 
of values, the other nine variables greatly 
influenced the results within their own smaller 
ranges.  

 

Fig. 6. Day Number’s Partial Dependence Plot  

 

Fig. 7. Wind Direction’s Partial Dependence Plot  

3.4 OTHER MODELS 
 
For the sake of completeness, other machine 

learning and physics-based models were 
implemented and tested. For example, one model 
was only fed the features used to mathematically 
compute specific humidity. All these models were 
outperformed by both FRF and CRF in either 
speed, accuracy, or both. 

 
3. RESULTS 
 

To evaluate the performance of each of our 
models, we use R2 score as our primary metric. 
We calculate the mean and standard deviation of 
the R2 score across ten random locations to 
summarize the performance of each model. 

 
While FRF outperforms CRF in both these 

metrics, CRF’s smaller input requirements and 
shorter run-time makes it our model of choice. 
Implementing CRF on resource-limited cyber 
physical systems is highly viable given the easily 
available features it is trained on and the much 
shorter run time. 

 

 

Fig. 8. Comparison of mean R2 scores of key models 

 

Fig. 9. Comparison of standard deviation in R2 scores of 

key models 

5. CONCLUSION 
 
This work presents a novel approach to 

predicting precipitable water vapor with high 
accuracy using an explainable machine learning 
algorithm. The proposed method offers a more 
cost-effective and accessible solution for PWV 
prediction, as it requires less data and 
computational resources than conventional 
methods. By using tree-based regression models 
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and a small set of easily measurable 
meteorological variables, the proposed method 
achieved high accuracy on meteorological data 
from multiple locations in the United States. 

 
The use of SP-Lime for variable selection 

contributed to the generalization of our model, 
which can be applied to meteorological data from 
other regions of the world. The results 
demonstrate that the proposed method 
outperforms the baseline R2 by 7.135%, indicating 
the effectiveness of the proposed approach. 
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