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1. INTRODUCTION 
 
The global to mesoscale air quality forecast 

and analysis system (GMAF) linking a mesoscale 
to a global model system was developed by Cho 
et al. (2021). The GMAF system was used to 
predict air pollutants concentrations and 
investigate their production mechanisms in Korea. 
In the previous studies using the GMAF (Cho et al., 
2021; Lim et al., 2022; Park et al., 2023), the 
researchers focused on atmospheric phenomena 
in 2016 and not severe PM2.5 pollution period. The 
PM2.5 pollution frequently occurred from winter to 
spring in 2018 and 2019 in Korea but the GMAF 
was not used to predict atmospheric phenomena 
during those periods.  

In this study, we introduced again the Korean 
air quality system named GMAF and used it to 
predict PM2.5, SO2, NO2, O3 in Seoul, capital of 
Korea, from winter to spring in 2018. Also, we 
assessed model performance using three 
statistical indicators: correlation coefficient (R), 
normalized mean bias (NMB), normalized mean 
error (NME). 

 

2. METHODS AND MATIRIALS 
2.1 Description of GMAF 

The global to mesoscale air quality forecast 
and analysis system (GMAF) was developed by 
Cho et al. (2021). Figure 1 shows the schematic 
diagram of GMAF framework. The GMAF uses the 
Weather Research and Forecasting (WRF) model 
version 3.6 as an atmospheric model and the 
Community Multi-scale Air Quality model (CMAQ) 
version 5.3.1 as an air quality model to predict 
concentrations of air pollutants. The CMAQ was 
modified to optimize its performance for Korea. 
The modification of CMAQ was described in 
section 2.3.  
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Figure 1. Schematic diagram of GMAF 

 

2.2 Grid Nudging and CAMS dataset 
The most important characteristic of GMAF is 

to apply the grid nudging based on four-
dimensional data assimilation (FDDA) not only to 
the WRF but also to the CMAQ with a global data 
assimilation system. For application of the grid 
nudging based on FDDA to the CMAQ and WRF, 
the Copernicus Atmosphere Monitoring Service 
(CAMS) forecast and reanalysis dataset created 
by the European centre for medium-range weather 

forecasts (ECMWF) with 0.4° grid resolution and 

the Global Data Assimilation System (GDAS) 

dataset with 0.25° grid resolution were used, 

respectively. The formula of grid nudging based on 
FDDA was defined in equation 1.  

 
𝑑𝑌𝑚𝑜𝑑𝑒𝑙

𝑑𝑡
= 𝐹(𝑥, 𝑌𝑚𝑜𝑑𝑒𝑙) + 𝑊(𝑥)(𝑌𝑜𝑏𝑠 − 𝑌𝑚𝑜𝑑𝑒𝑙) (1) 

 
where Y is dependent variable, x is independent 
spatial variable, F denotes discretized form of the 
governing equation, and W is nudging coefficient. 
The dependent variable Y is calculated by 
equation 2 and 3 for the WRF and CMAQ.  

 
𝑌 =  𝛼(𝑃𝑡𝑜𝑝 − 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒)  for the WRF (2) 

𝑌 =  𝜑𝐽𝑠    for the CMAQ (3) 
 

where α is meteorological variable of the WRF and 
Ptop and Psurface mean air pressure at the top and 
surface of the domain, respectively. The φ is mass 
concentration of chemical species and Js denotes 
vertical Jacobian of the terrain-influenced 
coordinates. The nudged variables and their 
nudging coefficients can be found in Cho et al. 
(2021).  
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The CAMS dataset uses a hybrid and sigma-
pressure vertical coordinate with 137 levels and 
the top level is 0.01 hPa. It provided 
concentrations of 14 gaseous species and seven 
aerosol species with 3-hour intervals. The 
gaseous chemical species provided from CAMS 
were nitrogen oxide (NO), nitrogen dioxide (NO2), 
ozone (O3), sulfur dioxide (SO2), formaldehyde 
(HCHO), hydrogen peroxide (H2O2), nitric acid 
(HNO3), hydroxyl radical (OH), peroxyacetyl 
nitrates (PAN), carbon monoxide (CO), methane, 
ethane, and propane. The aerosol species were 
dust and sea-salt with three size bins, hydrophobic 
black carbon, hydrophilic black carbon, 
hydrophobic organic matter, hydrophilic organic 
matter, and sulfate. Nitrate and ammonium were 
included as aerosol species of CAMS dataset from 
July 9 in 2019. Among chemical species of CAMS, 
SO2, CO, NO, NO2, isoprene, O3, dust, sea-salt 
were used as nudged variables. Cho et al. (2021) 
applied nudging coefficient depending on outer 
domain and inner domain of nested domain 
system. Since we used uniform grid system 
(Figure 3) in this work, we interpolated the CAMS 
dataset to the model domain except South Korea.  
 

2.3 Modification of CMAQ 
To improve the model performance, a few 

mechanisms in CMAQ were modified. First, we 
modified the wet scavenging mechanism to 
suppress overestimation of wet deposition, second, 
modifying the vertical mixing height, third, uptake 
coefficient of N2O5, and fourth, scale factor of 
potential volatile organic compounds from 
combustion (pcVOC) emission.  

 
2.3.1 Below-cloud Scavenging 

Current CMAQ assumes that accumulation 
and coarse modes particles are completely 
absorbed into cloud and rainwater. This 
assumption is not valid in the below-cloud area 
and may cause overestimation amount of wet 
scavenging, subsequently underestimation of 
particulate matter concentration in the below-cloud 
area. Thus, Cho et al. (2021) modified the below-
cloud scavenging rate by equation 4.  

 
𝜕𝑐(𝑡)

𝜕𝑡
=  −Λ𝑐(𝑡)   (4) 

The c(t) means the concentration of particulate 
chemical species at time ‘t’, and the Ʌ is the 
scavenging coefficient. The below-cloud 
scavenging coefficient was calculated by 
semiempirical formula from Slinn (1983) with 
collection efficiency depending on aerosol and 
droplet diameter.  

2.3.2 Vertical Mixing Height 
CMAQ’s vertical diffusion calculation requires 

a vertical eddy diffusivity (Kz) and set the minimum 
value of Kz (Kz,min) defined as equation 5 to avoid 
too low vertical diffusion. 

  
𝐾𝑧,𝑚𝑖𝑛 = 𝐾𝑍𝐿 + (𝐾𝑍𝑈 − 𝐾𝑍𝐿) × 𝐹𝑢𝑟𝑏𝑎𝑛   (5) 

 
where KZU and KZL mean highest Kz and lowest Kz. 
CMAQ version 4 set KZU and KZL equal to 2.0 and 
0.5. However, the values of KZU and KZL were 
changed to 1.0 and 0.01 in CMAQ version 5, 
which cause suppression of vertical diffusion and 
subsequently overestimation of air pollutants 
concentration at the surface. Thus, we adapted 
the values of KZU and KZL of CMAQ version 4 in 
this work.  
 
2.3.3 Uptake Coefficient of N2O5 

The particulate nitrate is formed by 
thermodynamic equilibrium between gaseous NH3 
and HNO3. The gaseous HNO3 is mainly produced 
by NO2+OH reaction during the daytime, and 
heterogeneous N2O5 hydrolysis during the 
nighttime. Due to uncertainty of uptake coefficient 
of N2O5 on the aerosol surface, CMAQ provides 
various options for estimation of the uptake 
coefficient of N2O5. Davis et al. (2008) and 
Bertram and Thorton (2009)’s N2O5 uptake 
coefficient formulas are provided as default option 
to estimate uptake coefficient of N2O5 on 
accumulation and coarse mode particles.  

Park and Cho (2020) found that nighttime 
HNO3 formation using N2O5 uptake coefficient 
calculated by Davis et al. (2008)’s formula led to 
overestimation of nitrate concentration in Korea. 
Therefore, we considered organic coating 
inhibition on the aerosol surface (Anttila et al., 
2006) to suppress overestimate uptake of N2O5 
and revised the formula of N2O5 uptake coefficient 
as equation 6.  

 
1

𝛾𝑁2𝑂5
=  

1

𝛾𝑁2𝑂5,𝑐𝑜𝑟𝑒
+ 

1

𝛾𝑁2𝑂5,𝑐𝑜𝑎𝑡𝑖𝑛𝑔
   (6) 

 
We calculated the ‘γN2O5,core’ and ‘γN2O5,coating’ by 

using Davis et al. (2008)’s formula and equation 7.  
 

𝛾𝑁2𝑂5,𝑐𝑜𝑎𝑡𝑖𝑛𝑔 =
4𝑅𝑔𝑎𝑠𝑇𝐻𝑜𝑟𝑔𝐷𝑜𝑟𝑔𝑅𝑐

𝐶𝑁2𝑂5ℓ𝑅𝑝
   (7) 

 
Horg and Dorg denote the Henry’s constant and the 
molecular diffusion coefficient of N2O5 in the 
organic coating, respectively. And Rc and Rp mean 
the radius of the aerosol core and that of the total 
aerosol, respectively. ℓ  is the coating thickness 
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and CN2O5 is the average velocity of N2O5 in the 
gaseous phase.  
 
2.3.4 Parameter of pcVOC Emission 

The potential secondary organic aerosol from 
combustion (pcSOA) is a new SOA surrogate 
species in AERO7. Cho et al. (2021) figured out 
that the pcSOA concentration was overestimated 
and subsequently organic matter (OM) 
concentration was overpredicted in Korea. The 
pcSOA is formed by an OH oxidation of precursor 
named pcVOC. The pcVOC emission is calculated 
by multiplying scale factor to POA emission 
without theoretical way. Thus, Park et al. (2023) 
revised pcVOC emission scale factor equal to 
0.0155 mole-pcVOC/g-POA based on sensitivity 
simulations focused on Seoul conducted by Cho et 
al. (2021). In this study, we also used the same 
pcVOC emission scale factor used in Park et al. 
(2023). 
 

2.4 Study Area and Model Configuration 
Seoul is the capital of South Korea and most 

populous city. Seoul is located in northwestern 
area of South Korea as shown in Figure 2 and 
frequently suffered from PM2.5 pollution in winter 
and spring. Therefore, we selected Seoul as the 
study area of interest in this study.  

 

Figure 2. Location of Seoul (star mark). 

 
As described above, the WRF version 3.6 and 

the modified CMAQ version 5.3.1 were used to 
predict air pollutants concentrations. The 3rd 
release of carbon bond version 6 (CB6r3) and 
AERO7 were used as gas-phase chemistry 
mechanism and aerosol module of CMAQ, 
respectively. As shown in Figure 1, the Clean Air 
Policy Support System (CAPSS) emission 2018 

and the Multi-resolution Emission Inventory in 
China (MEIC, Li et al., 2017; Zheng et al., 2018) 
2017 were used as anthropogenic emission 
inventory for South Korea and China, respectively. 
The Korea-United Staes Air Quality study 
(KORUS-AQ) anthropogenic emission inventory 
version 2.1 was also used for the rest of region. 
And the natural emission was generated by the 
Model of Emissions of Gases and Aerosols from 
Nature (MEGAN) version 2.1 (Guenther et al., 
2012).  

Figure 3 shows the model domain used in this 
study. It consists of 391 rows and 288 columns 
with 12 km grid spacing. The model domain 
includes Korean peninsula, China, Japan, and 
parts of Russia.  

 

 

Figure 3. Model domain of GMAF 

 
The model simulation was conducted with 

spin-up of 10 days. The study period of interest is 
from January 1st to March 31th in 2018, where 
severe PM2.5 episodes were occurred in Seoul.  
 

2.5 Evaluation of Model Performance 
Emery et al. (2017) suggested benchmarks of 

forecasting air pollutants using chemical transport 
model. We used three statistical indicators, 
correlation coefficient (R), normalized mean bias 
(NMB), and normalized mean error (NME) to 
evaluate the model performance. Those three 
statistical indicators were defined in equation 8, 9, 
and 10.  

 

𝑅 =  
∑ (𝑂𝑖−𝑂̅)(𝑀𝑖−𝑀̅)𝑖=𝑁

𝑖=1

√∑ (𝑂𝑖−𝑂̅)2𝑖=𝑁
𝑖=1

√∑ (𝑀𝑖−𝑀̅)2𝑖=𝑁
𝑖=1

    (8) 

𝑁𝑀𝐵 (%) =  
𝑀̅−𝑂̅

𝑂̅
× 100    (9) 

𝑁𝑀𝐸 (%) =  
1

𝑁

∑ |𝑀𝑖−𝑂𝑖|𝑖=𝑁
𝑖=1

𝑂̅
             (10) 
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The model performance was evaluated by 
comparing modeled PM2.5, SO2, NO2, and O3 
concentrations to observed ones which were 
monitored in monitoring station located in Seoul.  
 

3. RESULTS  
Table 1 to Table 4 summarize observed and 

modeled PM2.5, SO2, NO2, and O3 concentrations, 
and model performances. The model showed 
reasonable performance in PM2.5, NO2, and O3 
predictions.  

The Rs of PM2.5 prediction were around 0.9, 
which satisfy the goal of R for PM2.5 prediction 
(>0.7) by Emery et al. (2017). Also, the NMBs and 
NMEs satisfied the goal of them (<±10% for NMB, 
<35% for NME).  

The Rs of NO2 prediction ranged from 0.75 to 
0.91. The NMBs of NO2 prediction were ±2% in 
January and February 2018 and it increased to 20% 
in March 2018. The NMEs of NO2 prediction were 
18~34%.  

Although, the Rs of O3 prediction were 
relatively lower than those of PM2.5 and NO2 
predictions, they satisfied the goal of R for O3 
prediction (>0.75) in January, March, and total 
period. The modeled O3 was underestimated with 
the NMBs from -8% to -17%. The NMBs of O3 
prediction satisfied the criteria but the NMEs of O3 
prediction did not satisfy even the criteria (<± 15% 
for NMB, <25% for NME).  

The model highly underestimated SO2 
concentration during all study period (NMBs 
around -50%). Subsequently, the Rs and NMEs of 
SO2 prediction were worse than those of PM2.5, 
NO2, and O3 predictions. Since the detection limit 
of the SO2 monitoring equipment was so high that 
low SO2 concentration could not captured. 
Therefore, the observed SO2 concentrations were 
1~3 ppb higher in the temporal variations (not 
shown).  

 

Table 1. Monthly average of observed and 
modeled PM2.5 concentrations in Seoul from 
January to March, and model performances.  

 Avg. 
Obs. 

μg/m3 

Avg. 
Model 

μg/m3 

R NMB, 
% 

NME, 
% 

January 32.2 32.1 0.96 -0.1 20 

February 30.2 27.5 0.90 -9 20 

March 34.1 30.1 0.88 -12 28 

Total 32.3 30.0 0.88 -7 23 

 

Table 2. Monthly average of observed and 
modeled SO2 concentrations in Seoul from 
January to March, and model performances. 

 Avg. 
Obs. 
ppb 

Avg. 
Model 
ppb 

R NMB, 
% 

NME, 
% 

January 5.5 2.6 0.56 -53 53 

February 5.5 2.6 0.61 -52 54 

March 4.7 2.3 0.69 -51 54 

Total 5.2 2.5 0.63 -52 54 

 

Table 3. Monthly average of observed and 
modeled NO2 concentrations in Seoul from 
January to March, and model performances. 

 Avg. 
Obs. 
ppb 

Avg. 
Model 
ppb 

R NMB, 
% 

NME, 
% 

January 35.0 35.8 0.91 2 18 

February 34.1 33.3 0.83 -2 22 

March 33.1 39.9 0.75 20 34 

Total 34.1 36.4 0.82 7 24 

 

Table 4. Monthly average of observed and 
modeled O3 concentrations in Seoul from 
January to March, and model performances. 

 Avg. 
Obs. 
ppb 

Avg. 
Model 
ppb 

R NMB, 
% 

NME, 
% 

January 13.7 11.9 0.85 -13 29 

February 18.3 16.8 0.70 -8 34 

March 25.8 21.5 0.79 -17 31 

Total 19.3 16.7 0.80 -13 32 

 
 

4. CONCLUSION 
In this study, we conducted a model simulation 

for Seoul in Korea using GMAF developed by Cho 
et al. (2021) from January to March 2018. In 
GMAF, the grid nudging based on FDDA was 
applied not only to the WRF but also to the CMAQ. 
Also, below-cloud wet scavenging, vertical mixing 
height, N2O5 uptake coefficient, and pcVOC 
emission scale factor in CMAQ were modified. The 
model performance for predicting PM2.5, SO2, NO2, 
and O3 was assessed by R, NMB, and NME. The 
model showed acceptable agreement with 
observation in predictions of PM2.5, NO2, and O3 
with satisfaction of R, NMB, and NME’s goal and 
criteria.  

 
 

 



Presented at the 22nd Annual CMAS Conference, Chapel Hill, NC, October 16-18, 2023 

5 

Reference 
Anttila, T., Kiendler-Scharr, A., Tillmann, R. and 

Mentel, T.F., 2006. On the reactive uptake of 
gaseous compounds by organic-coated 
aqueous aerosols: Theoretical analysis and 
application to the heterogeneous hydrolysis 
of N2O5. The Journal of Physical Chemistry 
A, 110(35), pp.10435-10443. 

Bertram, T.H. and Thornton, J.A., 2009. Toward a 
general parameterization of N2O5 reactivity 
on aqueous particles: the competing effects 
of particle liquid water, nitrate and 
chloride. Atmospheric Chemistry and 
Physics, 9(21), pp.8351-8363. 

Cho, S., Park, H., Son, J. and Chang, L., 2021. 
Development of the global to mesoscale Air 
quality forecast and analysis system (GMAF) 
and its application to PM2.5 forecast in 
Korea. Atmosphere, 12(3), p.411. 

Davis, J., Bhave, P., Foley, K., 2008. 
Parameterization of N2O5 reaction 
probabilities on the surface of particles 
containing ammonium, sulfate, and nitrate. 
Atmospheric Chemistry and Physics, 8(17), 
5295-5311. 

Emery, C., Liu, Z., Russell, A.G., Odman, M.T., 
Yarwood, G. and Kumar, N., 2017. 
Recommendations on statistics and 
benchmarks to assess photochemical model 
performance. Journal of the Air & Waste 
Management Association, 67(5), pp.582-598. 

Guenther, A., Jiang, X., Heald, C.L., 
Sakulyanontvittaya, T., Duhl, T.a., Emmons, 
L., Wang, X., 2012. The Model of Emissions 
of Gases and Aerosols from Nature version 
2.1 (MEGAN2.1): an extended and updated 
framework for modeling biogenic emissions. 
Geoscientific Model Development, 5(6), 
1471-1492. 

Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, 
Y., Tong, D., Zheng, B., Cui, H., Man, H., 
2017. Anthropogenic emission inventories in 
China: a review. National Science Review, 
4(6), 834-866. 

Lim, J., Park, H. and Cho, S., 2022. Evaluation of 
the ammonia emission sensitivity of 
secondary inorganic aerosol concentrations 
measured by the national reference 
method. Atmospheric Environment, 270, 
p.118903. 

Park, H.Y., Hong, S.C., Lee, J.B. and Cho, S.Y., 
2023. Modeling of Organic Aerosol in Seoul 
Using CMAQ with 
AERO7. Atmosphere, 14(5), p.874. 

Park, H.Y. and Cho, S.Y., 2020, The effects of 
NH3 emission reduction on secondary 

inorganic aerosols evaluated by CMAQ, 
Journal of Korean Society for Atmospheric 
Environment, 36(3), 375-387.  

Slinn, W., 1983. Precipitation scavenging, in 
atmospheric sciences and power production–
1979. Division of Biomedical Environmental 
Research, US Department of Energy, 
Washington, DC, 466-532. 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., 
Geng, G., Li, H., Li, X., Peng, L., Qi, J., 2018. 
Trends in China's anthropogenic emissions 
since 2010 as the consequence of clean air 
actions. Atmospheric Chemistry and Physics, 
18(19), 14095-14111. 


