

Performance Optimization of the CMAQ model on Microsoft Azure

Steve Roach

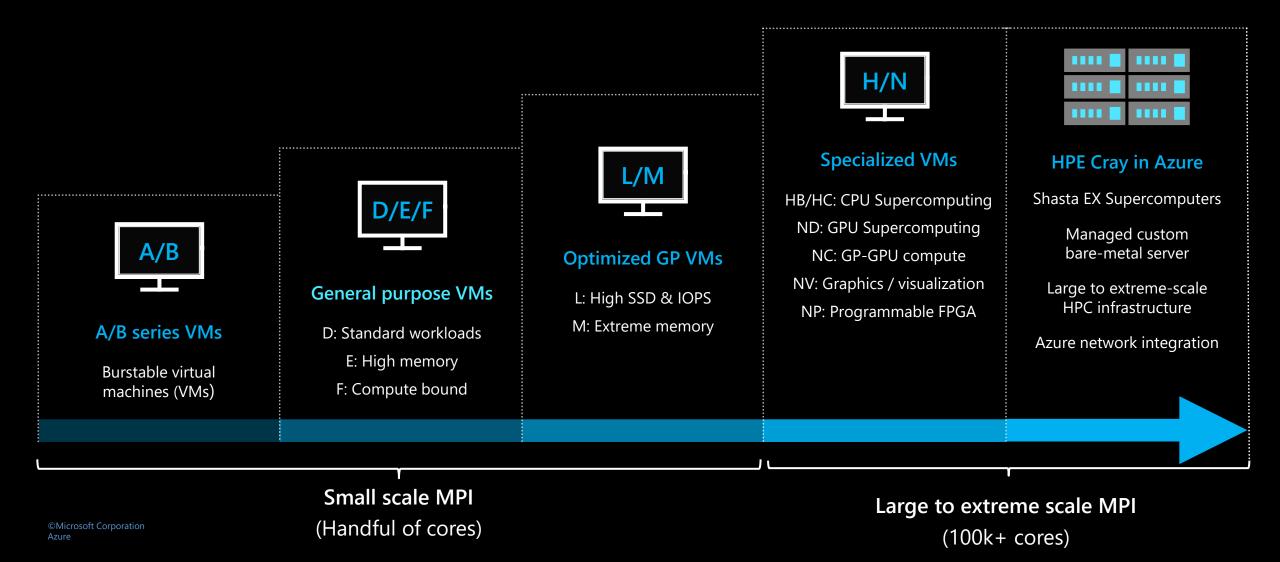
Azure / HPC Technical Specialist <u>sroach@microsoft.com</u>

- 1. Describe Azure Platform
- 2. Discuss Factors which impact application performance
 - a) Process Pinning
 - b) Storage

Azure: cloud built for HPC & Al

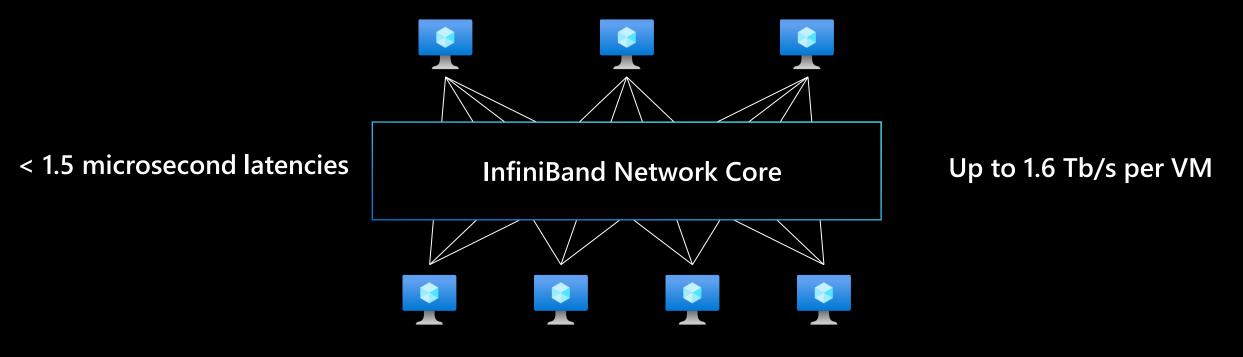
Genuine HPC & AI approach: platforms, benchmarks, people

Purpose-built hardware for the best performance, optimized priceperformance and differentiated solutions


TTM availability of leading hardware innovations to accelerate "time to solutions" for customer workloads

Strategy to leverage leading internal production workloads using the same systems for mission critical offerings on Azure.

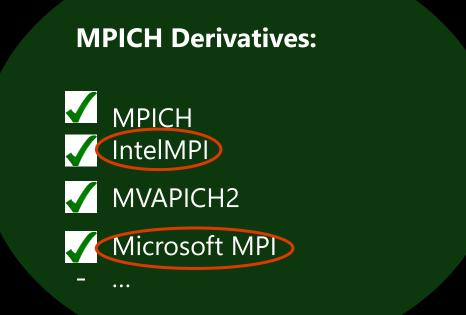
Supercomputing	Azure is
scale for the	the only
most demanding	public cloud
applications	provider
InfiniBand HPC & AI clusters for best performance on real workloads	offering the full range of HPC and AI capabilities
Compute	Compute
optimized VMs	optimized VMs
with low latency	with low latency
ethernet	ethernet
Azure	Other clouds


Azure looks a lot like a HPC Datacenter

Non-blocking Fat Tree topology

Hardware offload of MPI collectives

Full MPI & NCCL Integration



Bare-metal passthrough

Dynamic Connected Transport

Intelligent Adaptive Routing

SR-IOV Goodness on Azure

OpenMPI Derivatives:

OpenMPI
HPC-X
Platform MPI

- Feature parity with bare metal
- · Prior to SR-IOV enablement Supported only IntelMPI (dapl) and MSMPI

HBv3 Upgrade Milan-X comes to Azure HPC

HBv3 Virtual Machines enhanced with AMD 3rd Gen EPYC with 3D v-cache

No customer/partner changes required, same HBv3 VM sizes

3x L3 cache increase per core, chiplet, socket, and VM (1.5 GB)

Accelerates HPC applications bound by memory performance

Increases <u>effective</u> memory bandwidth up to ~630 GB/s

Decreases <u>effective</u> memory latency by as much as 51%

Performance & Scalability of HBv3 VMs with Milan-X CPUs

What is Milan-X and how does it affect performance?

Architecturally, Milan-X differs from Milan only by virtue of having 3x as much L3 cache memory per core, CCD, socket, and server.

CPU	Xeon 2690 v4 "Broadwell"	Xeon Gold 6148 "Skylake"	Xeon 8280 "Cascade Lake"	EPYC 7742 "Rome"	EPYC 7V73X "Milan-X"
Cores/2S server	28	40	56	128	128
L3 cache/2S server	70 MB	55 MB	77 MB	512 MB	1,536
Relative size	1x	0.8x	1.1x	7.3x	22x

Examples of workloads that can benefit from larger L3 cache are:

- Computational fluid dynamics (CFD) memory bandwidth
- Weather simulation memory bandwidth
- Explicit finite element analysis (FEA) memory bandwidth
- EDA RTL simulation memory latency

Advantages of Fewer Cores per Node

	120 Cores	96 Cores
RAM per Core	3.75 GB	4.67 GB
Memory B/W per Core	2.91 GB/s	3.65 GB/s
L3 Cache per Core	12.8 MB	16 MB

Importance of Process Pinning

For MPI applications, optimal pinning of processes can lead to significant application performance improvements for under subscribed systems.

In the chiplet design, AMD has essentially integrated a bunch of smaller CPUs together to provide a socket with 64 cores (8 - 16 smaller CPUs with 4-8 cores each).

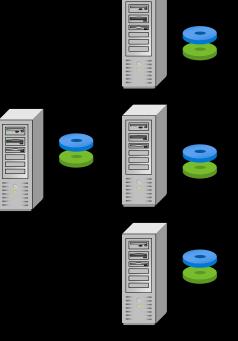
To maximize the performance from each core it is important to balance the amount of L3 cache and memory bandwidth per core.

Optimal MPI Process Placement for Azure HB Series VMs - Microsoft Community Hub

Pinning Example

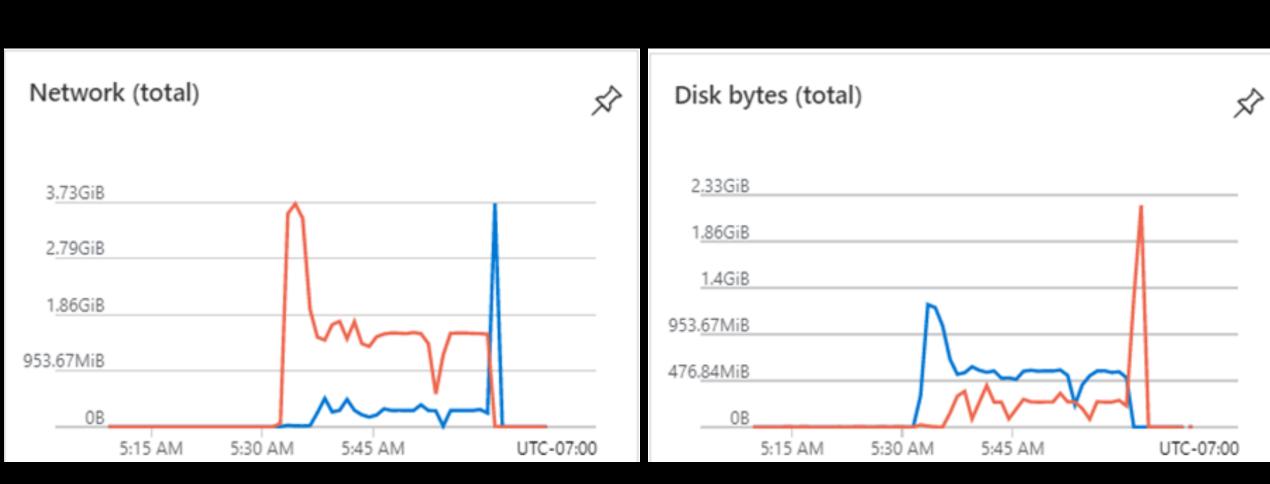
setenv PIN_PROCESSOR_LIST "--bind-to cpulist:ordered --cpu-set 0,1,2,3,4,5,8,9,10,11,12,13,16,17,18,19,20,21,24,25,26,27,28,29,30,31,32,33,34,35,38,3 9,40,41,42,43,46,47,48,49,50,51,54,55,56,57,58,59,60,61,62,63,64,65,68,69,70,71,7 2,75,76,77,78,79,80,81,84,85,86,87,88,89,90,91,92,93,94,95,98,99,100,101,102,103,1 06,107,108,109,110,111,114,115,116,117,118,119 --report-bindings "

(/usr/bin/time -p mpirun -np \$NPROCS <a>PIN_PROCESSOR_LIST --rank-by slot - mca coll ^hcoll -x LD_LIBRARY_PATH -x PATH -x PWD \$BLD/\$EXEC) |& tee buff_\${EXECUTION_ID}.txt


Storage Options

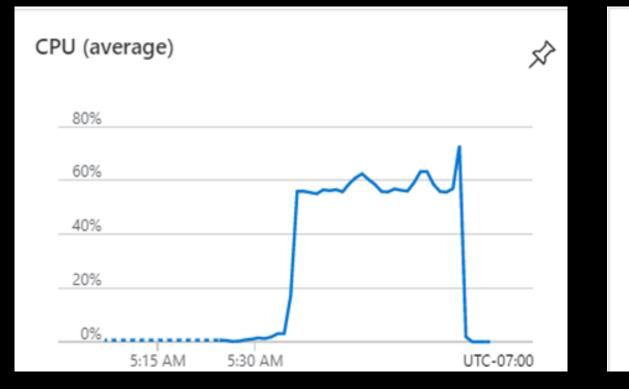
Azure Files with NFS

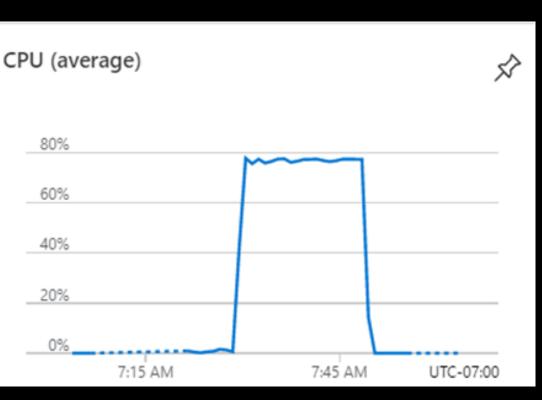
Stand Alone NFS Server Azure NetApp Files



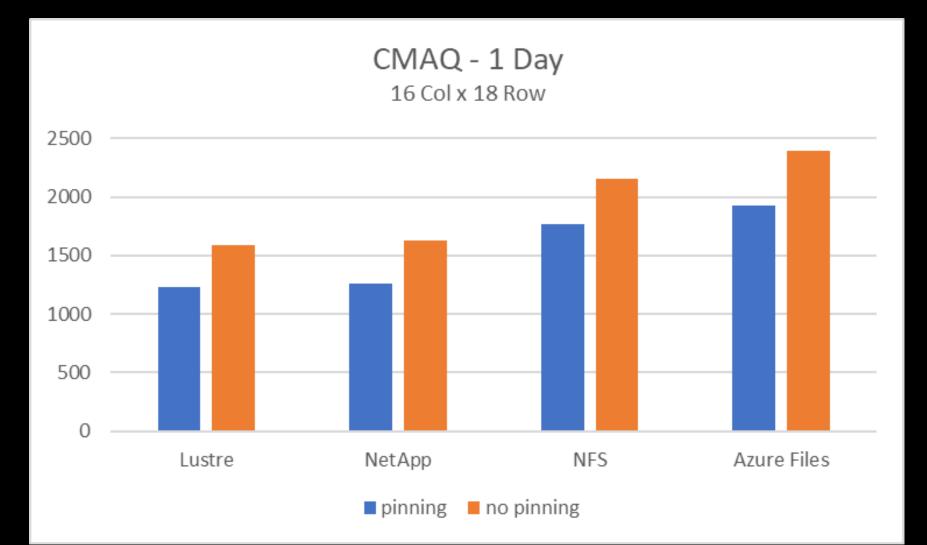
Lustre Cluster

Azure HPC File System Portfolio


	NFS Blobs*	NFS Files*	HPC Cache	Azure NetApp Files	*aaS PVFS	Cray ClusterStor
File System	NFSv3	NFSv4.1	NFSv3 NFSv4.1* SMB2.1*	NFSv3 NFSv4.1 SMB	Lustre BeeGFS	Lustre
Characteristics	Large size Medium throughput Sequential access Read-heavy	Medium size Medium throughput Random access In-place updates	Large file Sequential reads Optimizes latency and throughput Caches multiple source NAS environments	Medium size Medium throughput Random access In-place updates Low latency	Large size High throughput Sequential access 10-15 MiB/s per provisioned TiB	Very large size High throughput Sequential access 10-15 MiB/s per provisioned TiB
Use cases	Legacy NFS apps Backup and archive Analytics	Shared app data Databases Container storage Home directories	HPC up to 8GB/s Read heavy Cloud burst from on-prem NAS Multi-source file system (on-prem and in-cloud)	Enterprise application migrations NFS home dirs	Built to specs Durable or Ephemeral options	Long-lived HPC jobs (weeks/months) Data protection and tiering in Blob storage
File system details	5 PiB 100K IOPS (premium) 12.5GB/s throughput	100TiB 100K IOPS 10GB/s	50TiB cache 240k IOPS 8 GB/s	100 TiB 300K IOPS 4.5GB/s	<1PB TBD IOPS up to 200GB/s	5PiB, 15PiB, 45 PiB 240k IOPS 200GB/s
Region availability	Broad	Broad	Broad	Select	Broad	On-demand


CMAQ I/O Activity Stand Alone NFS Server

CMAQ CPU Activity – Average across 3 Compute Nodes


Stand Alone NFS Server

Lustre

Test Results – 3 nodes, 96 ppn

Questions?