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1. Introduction and Background 
 

Due in part to climate change, wildfire smoke 
in ambient air is an emerging public health 
concern. In this study, increases in Hazardous Air 
Pollutants (HAPs) on smoke-impacted days were 
analyzed for the western U.S. (Figure 1). HAPs 
are listed chemicals under the Clean Air Act and 
known to cause cancer and other serious health 
impacts (U.S. EPA, 2014).  

 

 

Figure 1. Map of U.S. EPA AQS monitors included in 
this study. 

 
 

2. Data and Methods 
 

In the primary analysis of this study, smoke-
impacted days were identified across 15-years of 
U.S. EPA Air Quality System (AQS) daily 
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monitoring data in western states (Figure 1) using 
NOAA Hazard Mapping System (HMS) remotely-
sensed smoke plumes (Ruminski et al., 2006; 
Ruminski et al., 2007). Days were marked as 
smoke-impacted if an overhead smoke plume was 
detected at any point during that day. A 
permutation test (Mundry et al., 1999) was 
conducted on station-specific differences between 
smoke and non-smoke days to identify elevated 
HAPs both within each year and in the total 15-
year period between 2006-2020. 

Additionally, in a case study of measurements 
in San Jose, California, nonnegative matrix 
factorization (NMF) (Pedregosa et al., 2011) was 
used to separate sources of 13 HAPs at the San 
Jose National Air Toxics Trends Station (NATTS) 
monitor. Two factors were specified in the NMF 
model to separate temporal patterns in fire and 
non-fire sources. NOAA Hybrid Single-Particle 
Lagrangian Integrated Trajectory (HYSPLIT) 

(Rolph et al., 2017; Stein et al., 2015) back-
trajectory modeling was used to link peak HAPs 
concentrations at the San Jose AQS monitor to 
Monitoring Trends in Burn Severity (MTBS) 
(Eidenshink et al., 2007) satellite-detected 
perimeters from major fires in 2017-2020. 

 
3. Results 
 

In the overall analysis, seven HAPs 
(acetaldehyde, acrolein, carbon tetrachloride, 
chloroform, formaldehyde, manganese, and 
tetrachloroethylene) were consistently higher on 
smoke vs. non-smoke days (P<0.05) over the 15-
year period (Figure 2). Associations were 
generally stronger in 2017-2020 than in earlier 
years (Figure 3). In 2020, 13 of the HAPs were 
significantly higher (P<0.05) on smoke-impacted 
days. In the preceding 14 years, the number of 
HAPs higher on smoke-impacted days ranged 
between 2 and 10. 
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Figure 2. Distributions of year and station-specific mean 
differences on smoke-impacted days for each HAP and 
PM2.5. 

 

 

Figure 3. Annual P-values for each HAP resulting from a 
permutation test of the station-specific mean differences 
in HAP concentrations on days impacted by smoke. 
Darker color denotes lower P values.   

 
Using HYSPLIT, air mass back-trajectories 

from days of elevated HAP concentrations were 
linked to the burn scars of four wildfire events near 
the AQS monitor in San Jose, California (Figure 
4). NMF was used to separate the 13 included 
pollutants into two factors. Factor 1 of the NMF 
model, representing 1,3-butadiene, 
acetaldehyde, benzene, chloroform, and 
formaldehyde, was elevated during wildfire 
events. HAPs scoring highest for factor 2 include 
carbon tetrachloride, dichloromethane, ethylene 
dichloride, tetrachlorethylene, and 
trichloroethylene. Minimums in Factor 1 were 

reduced in 2017-2020 compared to prior years of 
the study (Figure 5). 

 
 

 

Figure 4. HYSPLIT back-trajectories attributing air 
measurements in San Jose to major wildfires in 2017-
2020. Burn scar perimeters were obtained from MTBS. 

 

 

Figure 5. Temporal trends of the two factors identified in 
the NMF source separation analysis of 13 HAPs at the 
San Jose AQS monitor. Light gray shading represents 
duration of wildfire events, and dark gray lines indicate 
HYSPLIT modeling days mapped in Figure 4. 

 

4. Conclusions and Next Steps 
 

HAPs from wildfire smoke are an emerging 
risk to human health in western U.S. ambient air. 
Acetaldehyde, chloroform, and formaldehyde 
were identified as wildfire-associated in both the 
overall and case study analyses. In 2018 and 
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2020, more HAPs were identified as elevated than 
in other years in the study period. The case study 
of San Jose suggests that HAPs from industrial 
facilities in this area are declining, while those 
attributed to wildfire events are increasing. 

Next steps include investigating the correlation 
between HAPs and PM2.5 and comparing observed 
concentrations with U.S. EPA human health 
reference values. Additionally, we will explore 
trends in individual HAPs in San Jose and include 
additional case studies. 
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