

Sensitivity Assessment of the Ozone and Fine Particulate Matter Pollution Using a Regional-to-Local Coupling Model

Xuguo Zhang^{1,2}, Jenny Stocker³, Kate Johnson³, Yik Him Fung², Teng Yao², Christina Hood³, David Carruthers³, and Jimmy C. H. Fung^{1,2,*}

¹ Department of Mathematics, The Hong Kong University of Science and Technology, HK
 ² Division of Environment and Sustainability, The Hong Kong University of Science and Technology, HK
 ³ Cambridge Environmental Research Consultants, Cambridge, UK.

20th CMAS Conference

Nov 2nd, 2021

Conclusion

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Research Motivation

- Air pollution is severe!!! Health, climate mitigation, policy-making (Zhang et. al. EP 2020).
- Carbon Neutral (30-60) Plan & 14th Five-Year-Plan (2021-2025).
- 4.2 million deaths in 2016 (attributable to PM_{2.5}). (WHO report 2021)
- In 2019, >90% of global people reside in the areas in which the WHO air quality guideline (annual mean of 10 μ g/m³) for PM_{2.5} is exceeded. (WHO report 2021)
- High resolution modeling (ADMS-Urban) resolving the concentration gradient would be more accurate for health calculation.
- To implement a coupled model system (CMAQ-ADMS-Urban) and test the sensitivities are urgently needed in an urban area of GBA.

Source contribution Policy Evaluation

Health Risks

THE HONG KONG UNIVERSITY OF **Part I: Research framework**

香港科技大學

SCIENCE AND TECHNOLOGY

Domain setting of coupled modeling system THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

香港科技大學

1.25

2.5

5 Kilometers

科技大學 DNG KONG UNIVERSITY OF **Part II: Sensitivity scenario design** CE AND TECHNOLOGY

- Four sensitivity scenarios for the coupled model system.
- Model running period: April and May, 2019.
- Emission changes only focus on Guangdong province.
- Focusing on traffic and industry sectors since NO_x and VOC are two important precursors of O₃ formation and both sectors contribute substantially to PM_{2.5} and O₃ from previous studies.

Scenarios	I. Base case	II. Half Traffic case	III. Half Industry VOC case	IV. Both Control case
Scenario description	Business As Usual (BAU)	50% reduction in traffic emissions	50% reduction in industrial VOC emissions	Scenarios II & III
Regional model emissions	BAU	50% emission reduction in Mobile sector (all pollutants)	50% emission reduction in VOC from Industrial sector	50% emission reduction in a) mobile sector (all pollutants) and b) VOC emissions from the industrial sector
Local model emissions	BAU	50% reduction in emissions from explicitly defined road traffic sources	BAU	50% reduction in emissions from explicitly defined road traffic sources

香港科技大學 THE HONG KONG UNIVERSITY OF Part II: Emission changes for sensitivity scenarios science and technology

- The emissions changes are as same as expected.
- The maximum reduction for NOx is approximately 17% and for PM_{2.5} is only 5%.
- For VOCs, which are impacted by both control measures, emissions are reduced by a much larger amount, 47%.

Fig. 2: Daily column emission comparison of anthropogenic NOx for (a) Base case, (b) Half Traffic case, (c) Half Industry VOC case, (4) Both control case. Unit: moles/s.

香港科技大學 THE HONG KONG UNIVERSITY OF Part III: Regional model results-NO₂ SCIENCE AND TECHNOLOGY

- Clear reduction is observed in Guangzhou and Shenzhen.
- NO₂ concentrations are substantially higher in the HK, and the industrial areas towards Guangzhou, and also along shipping lanes.
- Diff plot showed the reduction up to 5 ppb in central Guangzhou and Shenzhen.

Part III: Regional model results-O₃ ONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

科技大學

- Half-traffic case: the O₃ increases in the urban areas and decrease in the rural (upper right) areas, due to reduced NOx titration and lower oxidant emissions. It indicates a VOC-limited O₃ formation regime in urban.
- **Reduced VOC case**: O₃ is reduced throughout the domain because lower VOCs correspond to lower levels of reactive species, resulting in less oxidant (in this case, O_3) being generated.
- Both controls: O₃ increases in urban of Guangzhou and Shenzhen, but with a lower magnitude comparing with Fig. a, due to the reduced VOC case effects.

113°E 113.2°E113.4°E113.6°E113.8°E 114°E 114.2°E114.4°E114.6°E

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY Part III: Regional model results-PM_{2.5}

- Period-average PM_{2.5} concentrations for the PRD.
- Half-traffic case leads to a moderate decrease in PM_{2.5} concentration.
- Considerable PM_{2.5} concentration differences result from the traffic restrictions imposed in the urban areas (Up to 3 µg/m³ in Shenzhen in **Both-control case**).
- (a) Base case

113°E 113.2°E113.4°E113.6°E113.8°E 114°E 114.2°E114.4°E114.6°E

(b) Half traffic case

113°E 113.2°E113.4°E113.6°E113.8°E 114°E 114.2°E114.4°E114.6°E

(a) Base case

25

50

75

100

125 150

175

200

- (b) Half traffic case
 Shows a case for the Guangzhou domain where NO₂ concentrations exceed the hourly limit value (200 µg/m³) in the middle of the day during May.
 Figures b and d show that the area of exceedance of the limit value of 200 µg/m³ is significantly reduced when the traffic emissions are halved.
 - Local NO₂ concentrations are not seen to change with variations in the VOC emissions (Figures c).

- O₃ concentrations in the Guangzhou domain during the same pollution episode.
- Reducing traffic emissions increases the spatial extent of the O₃ exceedances in urban areas due to reduced NOx titration of O_3 .
- Conversely, reducing VOCs leads to a reduction in the area of O_3 exceedance within this local domain.
- When both controls are applied in the local area (comparing a and d), the net effect is a slight increase in near-road O₃ concentrations, but a decrease in concentrations elsewhere.

20

100

80

120

(b) Half traffic case

- Modelled concentrations for a different time are presented for PM_{2.5}, as the atmospheric conditions associated with PM_{2.5} pollution episodes differ from those associated with O₃ and NO₂ episodes.
- Although there is a very small relative reduction in PM_{2.5} emissions, the impact in urban areas is significant during this episode (compare a and b), as this emissions reduction relates to near-ground traffic sources.
- The change in VOC emissions has a negligible effect on PM_{2.5} concentrations at this scale (7a and 7c), indicating the half-VOC strategy does not appear to be an effective control strategy for PM during the model period.

- Modelled concentrations to the measurements recorded at three sites, for the base case and three coupled model scenarios in addition to the base case regional model.
- For NO₂ and PM_{2.5} at the majority of sites, the coupled system predicts higher concentrations than the relatively coarse resolution regional model, and for O₃, the coupled system predicts lower concentrations.
- Fig. a shows that the NO₂ concentrations are dominantly contributed from the traffic sector.
- The NOx titration effects on the O₃ concentration in Fig. b drive up the O₃ concentration.
- Cutting the industry VOC emission sources is more effective for the O₃ control, revealing a VOC-limited regime in this region.

- The implemented coupled regional-to-local air quality model system allows a thorough assessment of the impact that NO_x and VOC emissions from traffic and industry have on ambient O₃ and PM_{2.5}, drawing a holistic pollution mitigation picture at a range of spatial resolutions.
- Half-traffic scenario leads to reductions of NO₂ and PM_{2.5}, but increases in O₃ concentrations in urban areas (and decreases in rural areas), revealing a VOC-limited O₃ formation regime.
- The reduced industrial VOC emissions scenario leads to reduced O₃ concentrations throughout the mitigation domain, suggesting more stringent VOC control measures in the industrial sector will substantially alleviate the worsening O₃ pollution.

Thank you!

xzhangbg@connect.ust.hk