

Implementation and Evaluation of Total Vegetation Data in the CMAQ Windblown Dust Module

Xinyue Huang¹, Hosein Foroutan¹

¹Department of Civil and Environmental Engineering, Virginia Tech Contact: xinyueh@vt.edu; hosein@vt.edu

The content, findings, and conclusions are the work of the authors and do not necessarily reflect the views of US EPA or NASA.

Importance of windblown dust (WBD) emissions

Human activities

Health issues

Mineral dust is among top contributors of global aerosols

Complex climate effects

(Mahowald et al., 2014)

Transport of nutrients

Credit to Steve Greco

Overview of the WBD module in the Community Multiscale Air Quality (CMAQ) model

- First released in CMAQv5.0 in 2012
- Major updates in CMAQv5.2 in 2017

(Appel et al., 2013, GMD; Foroutan et al., 2017, JAMES.)

Saltation

Remade from Fig. 1 in Foroutan et al., 2017.

 Saltation flux is a function of friction velocity (u_{*}) and threshold velocity (u_{*,t})

> When $u_* > u_{*,t}$ $F_H = C \frac{\rho_a}{g} u_*^3 \left(1 - \frac{u_{*,t}}{u_*} \right) \left(1 + \frac{u_{*,t}}{u_*} \right)^2$

Vegetation modulates WBD simulations

Current model uses maps for **PV** (photosynthetic vegetation) or look-up table for unspecified vegetation, omitting effects of **NPV** (non-photosynthetic vegetation)

NPV

- dead trees, yellowed grasses, litter, etc.
- abundant in dust sources regions

Credits to Lorraine Bryant, Wesley Tingey

Objectives:

- 1) To implement a total vegetation dataset in the WBD module
- 2) To test the effects of NPV on simulated dust emissions

Total vegetation dataset derived using spectral mixture analysis (SMA) method

- Based on satellite observation of surface reflectance
- SMA: resolve fractions of three surface components
- Total vegetation = PV + NPV
- Resolution: monthly, 5 km

(Guerschman et al., 2015)

- Linearly interpolated to daily
- Gap-filled
- Re-gridded to 12 km resolution

Comparison of MODIS FPAR (fraction of absorbed photosynthetically active radiation) and total vegetation dataset

Comparison of MODIS FPAR (fraction of absorbed photosynthetically active radiation) and total vegetation dataset

Updates in parameterization

Predefined NPV heights based on magnitude and seasonal trends of biomass

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Shrubland	PV	5	5	15	15	12	12	10	10	10	5	5	5
	NPV	6	6	5	5	5	5	5	5	6	8	8	6
Grass	PV	5	5	5	10	20	15	12	12	10	5	5	5
	NPV	8	5	5	5	5	5	5	5	10	10	8	8
Barren	PV	5	5	10	10	10	10	10	10	10	10	5	5
	NPV	4	4	4	3	3	3	3	3	5	5	5	5

Uncertainties? Sensitivity tests show that +/- 50% of change in h_{NPV} leads to within +/- 6% of change in soil concentration over most areas

Experimental design

Simulations: "PV" run and "PV+NPV" run

Model:	CMAQv5.3					
Domain:	Conterminous United States					
Time:	Entire 2016					
Grid:	12 km x 12 km, 35 layers					
Meteorology:	WRFv3.8 and MCIPv5.0					
Landuse:	Biogenic Emission Landcover Database version 3 (BELD3)					
Chemistry:	CB06r3					
Aerosol:	AERO7					
Soil type:	US State Soil Geographic (STATSGO) soil database					

Evaluation method

• Soil concentration

[Soil] = 2.2[Al] + 2.49[Si] + 1.63[Ca] + 2.42[Fe] + 1.94[Ti](Malm, 1994)

 IMPROVE (Interagency Monitoring of Protected Visual Environments) sites

 Normalized mean bias calculated for six western states (Nevada, Utah, Arizona, Wyoming, Colorado, New Mexico)

Seasonal average soil concentration reduces over most of southwestern US due to NPV

- Biggest changes in spring: over 50% of reduction in source regions
- During summer, most reductions seen in Salt Lake Desert and Sonoran Desert
- Suppression in the northern state of Montana
- More than 10% of changes over most southwestern US from spring to autumn

Overpredictions are reduced over most sites during spring, but underprediction are slightly worsen during summer

NPV suppresses dust emissions mainly by sheltering the surface and increasing the threshold velocity

Changes in three intermediate parameters during spring

Reduction in dust sources

Roughness correction factor, f_r

Increase/decrease in friction velocity

Friction velocity, u_{*} (m/s)

Vegetation-free erodible land fraction

- We implemented a total vegetation dataset into the CMAQ windblown dust module, with uncertainty addressed.
- Soil concentration reductions are most prominent in spring; more than 10% over most areas of southwestern US from spring to autumn.
- Overpredictions in spring are improved at most sites, but underpredictions in summer are intensified.
- Main mechanisms for dust suppression are through surface protection and raising threshold velocity.
- There are other potential applications of the total vegetation dataset (e.g. in dry deposition models).

References

- Anisimov, A., Axisa, D., Kucera, P. A., Mostamandi, S., & Stenchikov, G. (2018). Observations and Cloud-Resolving Modeling of Haboob Dust Storms Over the Arabian Peninsula. *Journal of Geophysical Research: Atmospheres, 123*(21), 12147-12179. doi:10.1029/2018JD028486
- Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., . . . Wong, D. C. (2021). The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation. *Geoscientific Model Development*, *14*(5), 2867-2897. doi:10.5194/gmd-14-2867-2021
- Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., . . . Roselle, S. J. (2013). Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. *Geosci. Model Dev., 6*(4), 883-899. doi:10.5194/gmd-6-883-2013
- Foroutan, H., & Pleim, J. E. (2017). Improving the simulation of convective dust storms in regional-to-global models. *J Adv Model Earth Syst, 9*(5), 2046-2060. doi:10.1002/2017MS000953
- Foroutan, H., Young, J., Napelenok, S., Ran, L., Appel, K. W., Gilliam, R. C., & Pleim, J. E. (2017). Development and evaluation of a physics-based windblown dust emission scheme implemented in the CMAQ modeling system. *Journal of Advances in Modeling Earth Systems*, *9*(1), 585-608. doi:10.1002/2016MS000823
- Guerschman, Scarth, P. F., McVicar, T. R., Renzullo, L. J., Malthus, T. J., Stewart, J. B., . . . Trevithick, R. (2015). Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. *Remote Sensing of Environment, 161*, 12-26. doi:10.1016/j.rse.2015.01.021
- Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D. S., & Flanner, M. G. (2014). The size distribution of desert dust aerosols and its impact on the Earth system. *Aeolian Research*, *15*, 53-71. doi: 10.1016/j.aeolia.2013.09.002
- Malm, W. C. (1994). Spatial and seasonal trends in particle concentration and optical extinction in the United States. *Journal of Geophysical Research, VOL. 99, NO. D1, PAGES 1347-137.*
- Nandintsetseg, B., & Shinoda, M. (2015). Land surface memory effects on dust emission in a Mongolian temperate grassland. *Journal of Geophysical Research-Biogeosciences*, 120(3), 414-427. doi:10.1002/2014jg002708
- Pantillon, F., Knippertz, P., Marsham, J. H., Panitz, H.-J., & Bischoff-Gauss, I. (2016). Modeling haboob dust storms in large-scale weather and climate models. *Journal of Geophysical Research: Atmospheres, 121*(5), 2090-2109. doi:10.1002/2015jd024349
- Pierre, C., Kergoat, L., Bergametti, G., Mougin, É., Baron, C., Abdourhamane Toure, A., . . . Delon, C. (2015). Modeling vegetation and wind erosion from a millet field and from a rangeland: Two Sahelian case studies. *Aeolian Research, 19*, 97-111. doi:10.1016/j.aeolia.2015.09.009
- Shinoda, M., Gillies, J. A., Mikami, M., & Shao, Y. (2011). Temperate grasslands as a dust source: Knowledge, uncertainties, and challenges. *Aeolian Research, 3*(3), 271-293. doi:10.1016/j.aeolia.2011.07.001