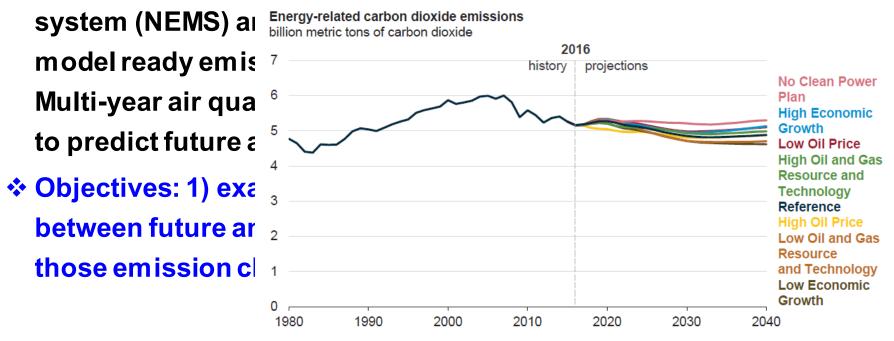


Impacts of Future Energy Transition on the U.S. Air Quality: Projections of Emissions and Air Quality in 2050

Kai Wang¹, Yang Zhang¹, Shen Wang², Benjamin Hobbs², Hugh Ellis², Emily Fisher², Kenneth Gillingham³, and Michelle Bell³

¹Department of Civil and Environmental Engineering, Northeastern University, Boston, MA


²Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD

³School of Environment, Yale University, New Haven, CT

20th Annual CMAS Conference, Chapel Hill, NC, November 1-5, 2021

Background and Objectives

- Modeling impacts of future energy transition on regional air quality and human health is very challenging
- Linking national scale energy models and regional air quality models via downscaling process is a very important step
- Emission change factors (ECFs) of major species for energy related sectors downscaled from the National Energy Modeling

Source: Annual Energy Outlook (2017)

Selected Scenarios

(Gillingham and Huang, 2019, 2020; Gillingham et al., 2021)

Reference without clean power plan (Refnocpp)

Projection assumes trend improvement in known technologies and current regulations without considering any potential impacts from regulations and others

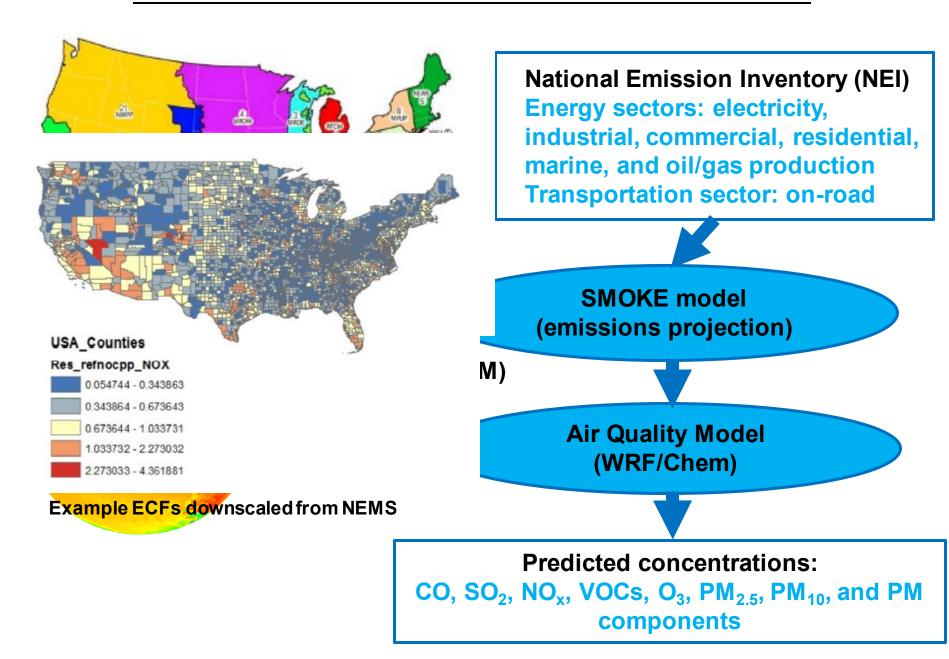
HighNG*

Projection assumes higher natural gas and oil resources and technology

HighEV*

Projection assumes higher electric vehicles penetration

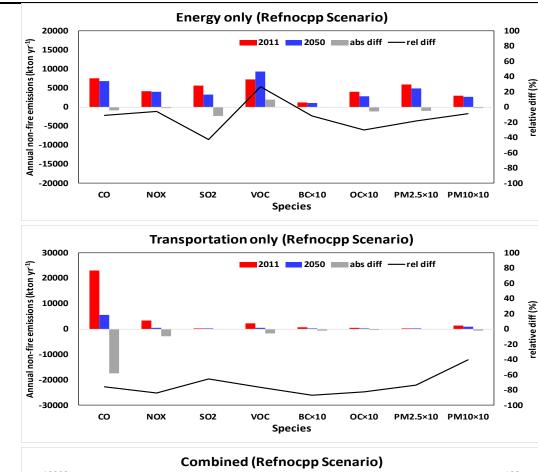
Port*

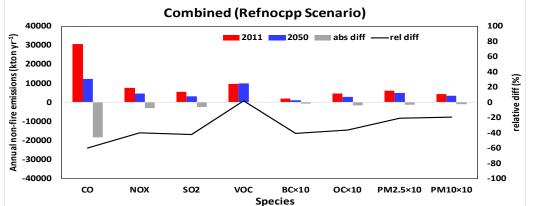

Fossil fuels for maneuvering and generating onboard are replaced by on-shore electricity by 2025. After 2025, energy consumption by marine ships is electricity

HighEE*

Innovations in building energy efficiency

*These scenarios are all side cases of Refnocpp

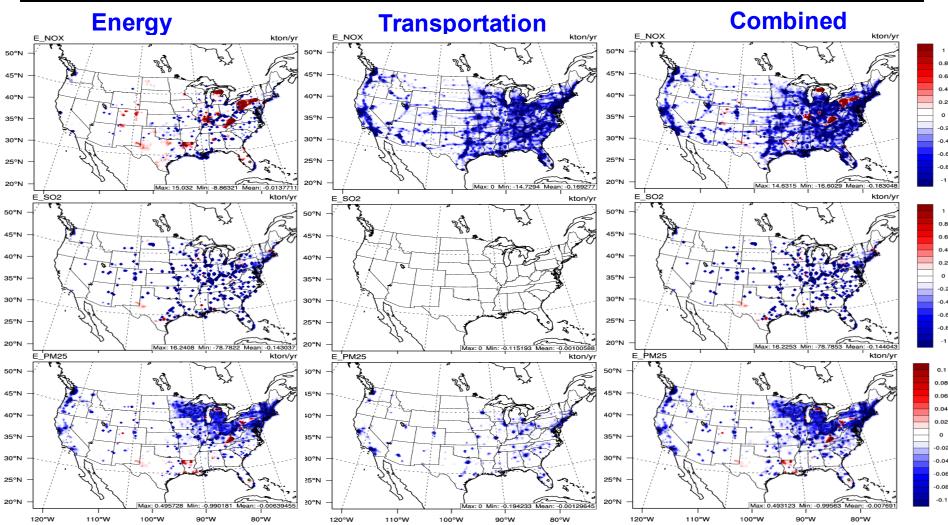

Methodology



Model Configuration & Simulation Setup

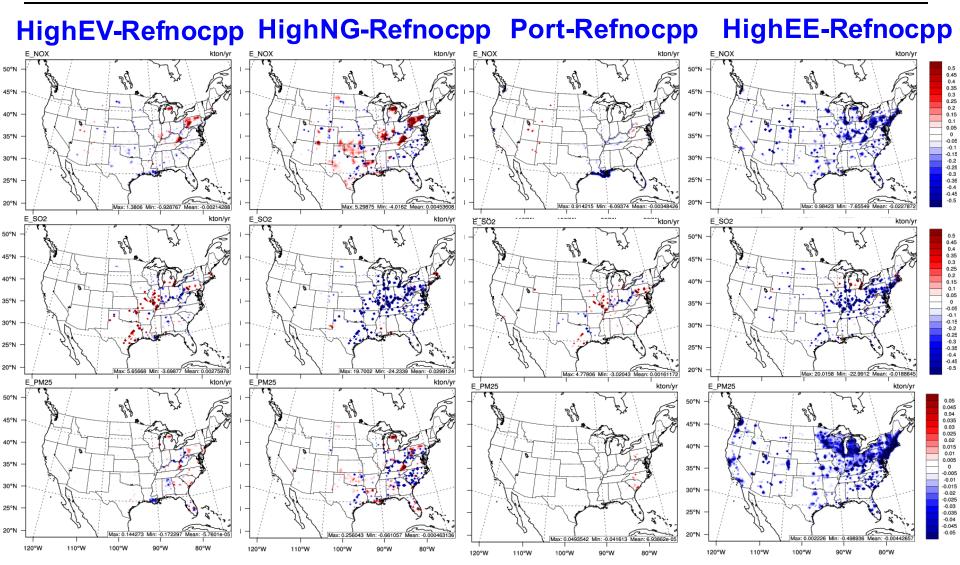
Domain and Peri	WRF/Chem v3.7.1 2008-2012 over CONUS 36 km (148×112) & 34 layers (up to 100 hPa)	Run Index	Description
 Model Period & Domain Horiz. & Vert. Resolution Physics and Che Radiation PBL & Land Surface Cumulus Microphysics Gas-Phase Chemistry Aerosol Module Photolysis 		Base	Baseline simulation using the 2008- 2012 climate and NEI 2011
		E_refnocpp	Same as Base but with 2050 projected emis for major energy sectors under refnocpp scenario
		T_refnocpp	Same as Base but with 2050 projected emis for onroad mobile sector under refnocpp scenario
		TandE_ref	Same as Base but with 2050 projected emis for combined sectors under refnocpp scenario
		TandE_highEV	Same as Base but with 2050 projected emis for HighEV scenario
Input • Chemical & C Met. IC/BC • Anthropogenic	CESM/CAM5 v1.2.2 (He et al., 2015; Glotfelty et al., 2017) & NCEP/FNL	TandE_highNG	Same as Base but with 2050 projected emis for HighNG scenario
		TandE_port	Same as Base but with 2050 projected emis for Port scenario
		TandE_highEE	Same as Base but with 2050 projected emis for HighEE scenario

Emission Projections-Refnocpp Scenario


- Much larger reduction of SO₂ and PM for energy sectors
- Reduction of CO, NO_x, and VOCs more dominant by transportation sector

٠

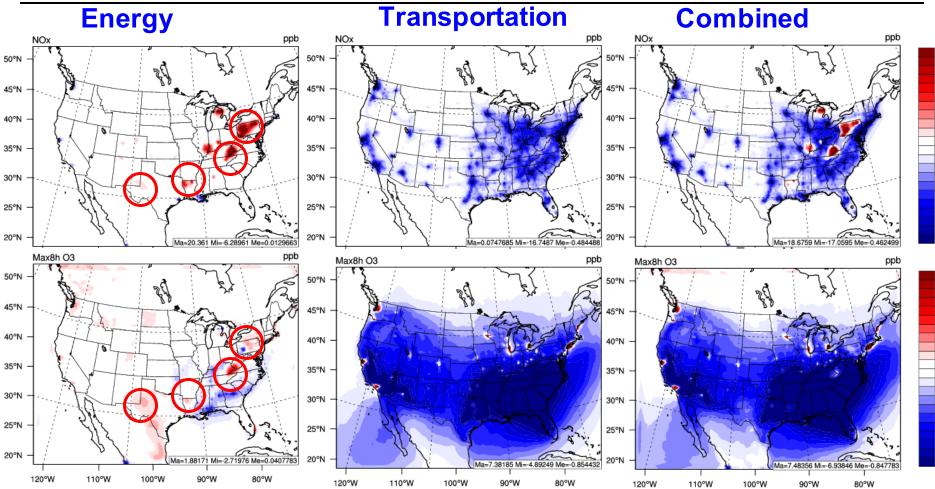
Large reduction of VOCs emissions from mobile sources offset by increases in oil/gas production


Energy

Emission Projections-Refnocpp Scenario

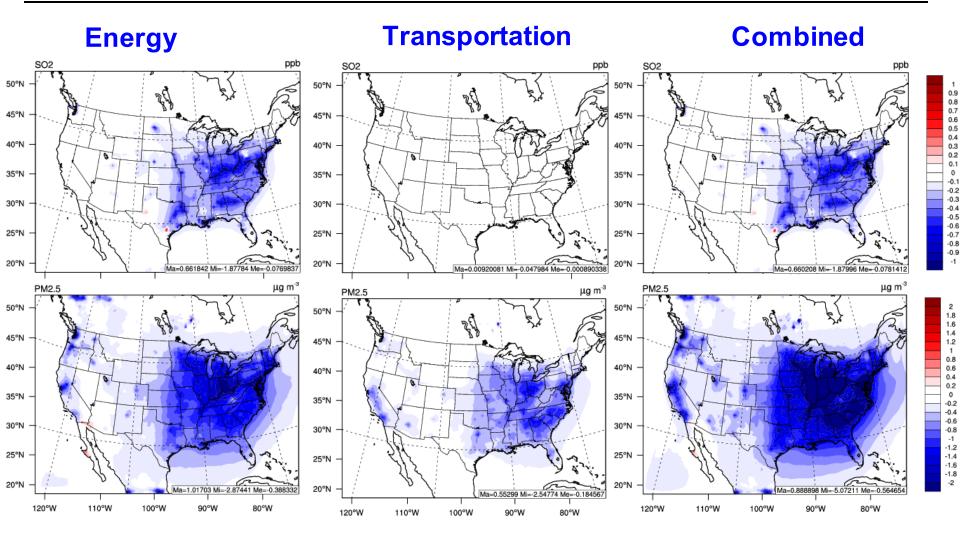
- Transportation emissions projected to decrease over CONUS for all species, those in energy sectors show more heterogeneity with increases especially for NO_x, VOCs, and PM_{2.5} in some regions due to more oil & gas production
- Overall emission changes for NO_x are dominated by on-road mobile sources while those for SO₂ and PM_{2.5} are dominated by power/industrial sectors

Emission Projections-Other Scenarios


- Compared to refnocpp, other scenarios show noticeable differences for emission changes due to different energy transition assumptions
 bighEE above the largest reductions
- highEE shows the largest reductions

Air Quality Projections-Refnocpp Scenario

3.5


-3.5

1.8 1.6

- Wide-spread domain-mean and maximum reductions of max 8hr O₃ by ~1.5 ppb (~4.0%) and up to 6.9 ppb (~15%), respectively in combined case
- Dominant impacts from transportation on O₃ reduction
- Noticeable increases (hot spots) for NO_x and O₃ over TX, LA, KY, and PA etc., due to the increased precursor emissions caused by oil & gas production

Air Quality Projections-Refnocpp Scenario

- Wide-spread domain-mean and maximum reductions of PM_{2.5} are by ~1.0 μg m⁻³ (~16.3%) and up to 4.1 μg m⁻³ (~39.1%), respectively in combined case
 Dominant impacts from energy sectors on both SO, and RM, reduction
- Dominant impacts from energy sectors on both SO₂ and PM_{2.5} reduction

Air Quality Projections-Other Scenarios

HighEV-Refnocpp HighNG-Refnocpp Port-Refnocpp HighEE-Refnocpp

- WRF/Chem simulations show noticeable changes of max 8h O₃ and PM_{2.5} over specific regions between scenarios due to different assumptions
- Overall highEE scenario shows the largest reduction over CONUS due to large decreases in building demand for energy

Major Findings and Future Work

- Projected emission changes in 2050 under all future scenarios show large reduction for CO, NO_x, and SO₂ due to the retirement of coal power plants and gasoline vehicles, but small increase for VOCs and moderate reduction for PM_{2.5} due to offset of increased natural gas/oil production in states such as TX, PA, OH, and KY
- Emission trends for CO, NO_x, and VOCs are dominated by on-road mobile sources while those for SO₂ and PM_{2.5} are mainly affected by energy sectors such as power plants and industry
- WRF/Chem simulations using projected emissions show domainmean small increase for VOCs (1.4 to 5.7%); small to moderate reductions for max 8hr O₃ (-3.9 to -4.3%), CO (-10.1 to -11.1%), and PM_{2.5} (-12.0 to -13.7%); and relatively large reduction for NO_x (-31.6 to -38.8%) and SO₂ (-34.6 to -41.8%), indicating the important roles of future energy transition in air quality
- Future work: completing multi-decadal projection (e.g., 2020, 2030, and 2040) and examining the impacts of changes in climate, land use/cover, and lateral boundary conditions on future air quality

Acknowledgments

- This study was developed at Northeastern University under Assistance Agreement No. RD835871 awarded by the U.S. Environmental Protection Agency (EPA) to Yale University
- High performance computing was provided by the Stampede XSEDE high-performance computing support under the NSF ACI-1053575; Cheyenne (ark:/85065/d7wd3xhc) of NCAR's CISL, sponsored by the NSF; and NERSC, a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231
- The views expressed in this work are those of the authors alone and do not necessarily reflect the views and policies of the U.S. EPA. EPA does not endorse any products or commercial services mentioned in this study