Specifics of pollutant dispersion in street canyons

M.Velizarova, R.Dimitrova, A. Burov

Brief description of ADMS-Urban

- local Gaussian dispersion model
- latest understanding of the boundary layer structure
- advanced algorithms for the height-dependence of wind speed, turbulence, and stability
- embedded Street canyon model
- photochemical model for NOx and O₃

Schematic representation of ADMS-Urban.

(Source: http://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html)

Brief description of the Advanced street canyon module in ADMS-Urban

Table 1 Summary of component sources in the advanced street canyon module.

Component source		Canyon effect	Dispersion type	Wind	Region of
ID	Name	represented		direction	influence
1	Along-canyon	Channelling along canyon	Road source with wall reflections	Along canyon	Within canyon
2	Across-canyon	Direct dispersion across canyon by circulating flow	Simplified road source	Across canyon	Within canyon
3	Recirculation	Recirculation of pollution trapped within canyon	Well-mixed cells with vertical smoothing	n/a	Within canyon
4	Non-canyon	Dispersion through gaps between buildings	Road source	Upstream	Within and outside canyon
5	Canyon-top	Dispersion out of the top of the canyon	Volume source	Upstream	Outside canyon
6	Canyon-end	Dispersion out of the end of the canyon	Volume source	Upstream	Downstream of canyon

Diagram of the six component sources used in the advanced street canyon module.

(**Source**: CERC_ADMS-Urban4.1_User_Guide)

(Source: CERC_ADMS-Urban4.1_User_Guide)

Model set – up and simulated cases

Table 2 Values of the aspect ratio H/W of the modelled canyons and values of the aspect ratio H/W corresponding to the different canonical flow regimes.

Boulevard/street	H/W	Oke,2017	Canonical flow regimes
bul. Tsar Boris III	0.28	H/W<0.35	Isolated roughness flow
bul. Todor Aleksandrov	0.45	0.35 <h th="" w<0.65<=""><th>Wake interference flow</th></h>	Wake interference flow
G. Rakovski str.	2.21	H/W>0.65	Skimming flow

U (m/s)	L_{MO} (m)	$1/L_{MO} (m^{-1})$	h (m)	h/L _{MO}	P-G Category
1	-2	-0.5	1300	-650	A
2	-10	-0.1	900	-90	В
5	-100	-0.01	850	-8.5	С
5	œ	0	800	0	D
3	100	0.01	400	4	E
2	20	0.05	100	5	F
1	5	0.2	100	20	G

Table 3 Values of wind speed, Monin – Obukhov length (L_{MO}) and boundary layer height (h), which may be used to represent Pasquill – Gifford categories A–G.

(**Source**: CERC_ADMS-Urban4.1_User_Guide)

Pasquill – Gifford categories case results

NO2 concentration field for A (left), D (center) and G (right) stability categories at 2 m - a), b), c) and at 10 m - d), e), f) height for bul. Tsar Boris III. (H/W < 0.35)

NO2 concentration field for A (left), D (center) and G (right) stability categories at 2 m – a), b), c) and at 10 m – d), e), f) height for bul. Todor Aleksandrov. (0.35 < H/W < 0.65)

NO2 concentration field for A (left), D (center) and G (right) stability categories at 2 m - a), b), c) and at 10 m - d), e), f) height for G. Rakovski str. (H/W > 0.65)

Real meteorological conditions case results

Daily mean concentrations of NO₂ calculated by the model (blue) and measured at AQS Pavlovo (orange).

Area of the simulations and the measurement site location.

Acknowledgements: This work has been carried out in the framework of a research project from a competitive session of the Sofia University "St. Kl. Ohridski"- 2021 for supporting a doctoral student N° 80-10-66/22.03.

Thank You for the attention!