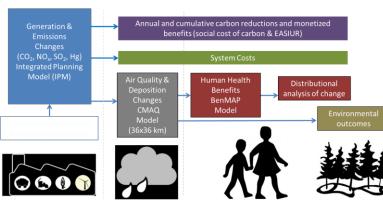
US Clean Energy Futures - an analysis of different energy policies towards cleaner air

Petros Vasilakos¹, Charles Driscoll², Kathy Fallon Lambert³, Peter Wilcoxen², Armistead Russell¹, Dallas Burtraw⁴, Maya Domeshek⁴, Qasim Mehdi², Huizhong Shen⁵

¹Georgia Institute of Technology; ²Syracuse University; ³ Harvard T.H. Chan School of Public Health; ⁴Resources for the Future; ⁵Southern University of Science and Technology

Introduction

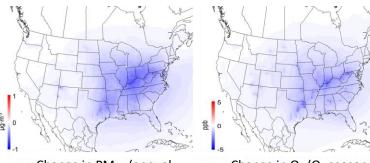

- The Biden Administration has called for a 100 percent carbon-free power sector by 2035 with an interim target of 80 percent clean electricity by 2030
- To this end, we simulate an array of various Clean Energy Standards (CES) for EGUs to compare the costs and benefits of implementing such policies, with a focus on 2030, 2040 and 2050

Objective

To compare the:

- 1. Carbon dioxide emissions
- 2. Cost
- 3. Co-pollutant emissions
- 4. Air quality and atmospheric deposition
- 5. Health outcomes
- 6. Distributional analysis of benefits
- of 12 different energy polices

Approach



Scenario families

- Clean Energy Standard (100% clean by 2040 or 2050)
- Cap & Trade (0 emissions by 2050)
- Carbon price (\$50 or \$25 per ton emitted)

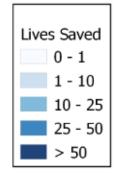
PM2.5 and Ozone reductions Compared to No Policy (BAU) in 2030

Change in PM₂₅ (annual average of 24-h averages) Change in O_3 (O_3 season average of maximum daily 8-h averages)

Costs vs Benefits

cost to reductions

focus on CES40B


All policies produce benefits -

Considerable air pollution benefits realized

✓ Most of the reductions are localized in the Eastern US

County Changes Annual Level in Mortality from PM_{2.5} and O₃ for 2030

- BENMAP analysis predicts a total of 11,200 lives saved between the BAU and CES40B scenario
- Net monetized benefits highest out of all policies (~\$600 billion)

Takeaways

- All policies produce net benefits, with climate benefits substantially exceeding policy costs
- · High ambition policies have modest costs and can reach low or zero carbon emissions for ~15% above baseline costs
- Slightly less ambitious policies have sharply lower cost and can achieve ~75% of high ambition reductions for ~9% above baseline costs
- Policy design is important since it affects costs, timing, co-pollutants, local air quality, distributional impacts

More info and up to date information: https://cleanenergyfutures.syr.edu/