

Evaluation of National Air Quality Forecast Capability: a Case Study of Summer 2019 Comparing to WRF/CMAQ

Youhua Tang^{1,2}, Patrick C. Campbell^{1,2}, Rick Saylor¹, Barry Baker^{1,2}, Daniel Tong^{1,2}, Rick Saylor¹, Ariel Stein¹, Jianping Huang^{3,4}, Ho-Chun Huang^{3,4}, Edward Strobach^{3,4}, Jeff McQueen³, Ivanka Stajner³, Jose Tirado-Delgado^{5,6}, and Youngsun Jung⁵

1. NOAA Air Resources Laboratory (ARL), College Park, MD.

2. Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA.

3. NOAA National Centers for Environmental Prediction (NCEP), College Park, MD 4. I.M. Systems Group Inc., Rockville, MD

5. NOAA NWS/STI 6. Eastern Research Group, Inc (ERG)

Upgrading the National Air Quality Forecasting Capability (NAQFC) with the newer air quality model, emission and meteorology.

See Dr. Campbell's presentation (#2610 of the model development session) for detail.

Some key changes about the meteorological preprocessor, NOAA-EPA Atmosphere-Chemistry Coupler (NACC), developed from MCIP.

- Allow flexible meteorological inputs other than WRF through the interpolation from non-native grids, such as the NOAA Global Forecast System (GFS) with the Finite Volume 3 (FV3) dynamic core in the global cubed sphere.
- Accommodates the user-defined vertical layers, native GFS or collapsed layers.

To evaluate NAQFC vs traditional WRF-ARW/CMAQ, we conduct a case study comparison.

NAQFC Update and Configuration

Forecast Length: 48 → 72 hours

Meteorology: NMM-B → FV3GFS (latest operational Version 16)

Met coupler: PreMAQ > NACC (adapted from U.S. EPA's MCIP) with parellel capablity

CMAQ: 5.0.2 (cb5/Aero6) → 5.3.1 (cb6r3/Aero7)

Anthropogenic emission: NEI2014v2 → NEI2016v1

Wildfire emission: HMS/Bluesky -> GBBEPx

Other Science Updates: Fengsha dust scheme, global aerosol LBCs, updated biogenics, BIDI-NH₃, LAI/GVF

Meteorological Driver Comparison

Model Settings	FV3-GFSv16	WRF-ARWv4.0.1
Domain	Global C768L127 (~ 13 km horizontal resolution, 127 vertical layers up to 80km), interpolated to the 12km CONUS domain with 35-layers up to about 14km (60hPa)	12km CONUS 35 vertical layers up to 100hPa
Cloud Microphysics	GFDL six-category cloud microphysics scheme (Lin et al., 1983; Chen and Lin, 2011; Chen and Lin, 2013)	Morrison 2-moment scheme (Morrison et al., 2009)
PBL Physics Scheme	sa-TKE-EDMF (Han and Bretherton, 2019)	Yonsei University Scheme (Hong et al., 2006)
Cumulus Parameterization	SAS Scheme (Han et al. 2011; 2017)	Kain Fritsch multiscale (Kain, 2004)
Radiation	RRTMG	RRTMG
Land Surface Model	Noah	Noah
Surface Layer	Monin-Obukhov (Monin-Obukhov 1954; Grell et al. 1994; Jimenez et al. 2012)	Revised MM5 Scheme (Jimenez et al., 2012)
Other treatment		FDDA nudging is enabled for temperature and specific humidity whole domain, and for wind components (U, V) outside the PBL.

Evaluation of *non-fire* events during FIREX-AQ 2019

Case study for FIREX-AQ DC-8 Flight on July 22, 2019.

Meteorology comparison for DC-8 Flight on 07/22/2019

Compared to the DC-8 Flight over the California central valley, both meteorological models had dry bias.

Comparison for diagnosed vertical velocities

FV3/CMAQ showed a larger vertical velocity (diagnosed from horizontal winds) than that of WRF/CMAQ, though both models yielded much weaker vertical motions than the observation, especially within PBL.

CMAQ Comparison for the Non-fire events on 07/22/2019

Evaluation of *fire* events during FIREX-AQ 2019

Williams Flats Fires: Washington and Montana DC-8 Flights on August 03, 06, 07.

Model vs. Aircraft Curtain Plots of RH %

FV3/CMAQ

WRF/CMAQ

FV3 tends to have stronger convection than WRF.

CMAQ prediction comparison for the fire event

These two models tended to yield similar results. They underestimated wildfire emissions for NOx and CO, though the element carbon (EC) predictions were reasonable.

		FV3/CMAQ	FV3/CMAQ	FV3/CMAQ	FV3/CMAQ	WRF/CMAQ	WRF/CMAQ	WRF/CMAQ	WRF/CMAQ
	Variables	MB	RMSE	R	Slope	MB	RMSE	R	Slope
Statistic for non-fire events below 3km over west of -100°W	Temperature (K)	0.98	2	0.99	1.1	1.1	2.2	0.99	1.2
	RH (%)	-7.3	12	0.78	0.72	-6	12	0.68	0.6
	Wind Speed (m/s)	0.76	3.3	0.43	0.47	-0.051	2.9	0.42	0.38
	O3 (ppbv)	-11	15	0.65	0.34	-11	14	0.71	0.39
	CO (ppbv)	-38	53	0.65	0.57	-38	54	0.65	0.58
	NOx (ppbv)	0.51	2.9	0.7	1.1	0.36	2.8	0.69	1.1
	NOy (ppbv)	-0.042	3.1	0.74	0.89	-0.096	3.1	0.72	0.83
	NOz (ppbv)	-0.47	1.2	0.78	0.55	-0.32	1.1	0.78	0.65
	HNO3 (ppbv)	0.15	0.42	0.68	1.3	0.23	0.51	0.66	1.4
	PAN (ppbv)	-0.25	0.42	0.67	0.22	-0.23	0.39	0.67	0.28
	C2H4 (ppbv)	0.058	0.19	0.7	0.87	0.039	0.19	0.66	0.82
	C2H2 (ppbv)	-0.073	0.14	0.78	0.5	-0.071	0.14	0.75	0.5
	SO2 (ppbv)	-0.24	0.57	0.024	0.0083	-0.22	0.57	-0.012	-0.0045
	Acetone (ppbv)	-2.3	2.5	0.69	0.19	-2.2	2.4	0.71	0.21
	HCHO (ppbv)	-0.97	1.3	0.56	0.45	-0.92	1.3	0.52	0.46
	Toluene (ppbv)	0.041	0.15	0.76	1.7	0.036	0.14	0.76	1.7
	lsoprene (ppbv)	0.036	0.17	0.6	0.84	0.0059	0.14	0.64	0.77
	EC (µg/std m3)	0.19	0.57	0.52	2.1	0.23	0.61	0.46	1.9
	OA (μg/std m3)	-7.2	9.7	0.56	0.26	-6.7	9.7	0.47	0.24
	SO4 (µg/std m3)	-0.78	1.1	0.086	0.019	-0.77	1.1	0.035	0.0068
	NH4 (µg/std m3)	-0.62	0.81	0.42	0.1	-0.61	0.79	0.52	0.15
	NO3 (µg/std m3)	-1.1	1.5	0.56	0.23	-1	1.4	0.56	0.28
	AOE@550nm (/Mm)	-29	47	0.59	0.23	-27	46	0.59	0.23
	J_01D (/s)	-9.80E-07	4.90E-06	0.96	0.91	5.50E-06	8.10E-06	0.96	1.2
	J_NO2 (/s)	-0.00086	0.0016	0.94	0.85	-0.00025	0.0012	0.96	0.89

		FV3/CMAQ	FV3/CMAQ	FV3/CMAQ	FV3/CMAQ	WRF/CMAQ	WRF/CMAQ	WRF/CMAQ	WRF/CMAQ
Statistic for fire events below 3km over west of -100°W	Variables	MB	RMSE	R	Slope	МВ	RMSE	R	Slope
	Temperature (K)	-0.39	0.7	1	1	-0.69	0.86	1	1
	RH (%)	-0.76	7.8	0.71	0.55	4.3	11	0.56	0.54
	Wind Speed (m/s)	0.77	2.2	0.61	0.62	-0.73	2.1	0.66	0.73
	O3 (ppbv)	-6.6	12	0.59	0.26	-7	11	0.65	0.34
	CO (ppbv)	-380.	870.	0.6	0.035	380.	880.	0.44	0.024
	NOx (ppbv)	0.06	6.4	0.46	0.23	-0.62	7	0.31	0.15
	NOy (ppbv)	-4.2	13	0.51	0.12	-4.7	14	0.31	0.073
	NOz (ppbv)	-4.8	10	-0.19	-0.011	-4.7	10	-0.2	-0.012
	HNO3 (ppbv)	0.15	0.26	0.53	1.1	0.18	0.28	0.4	0.77
	PAN (ppbv)	-0.79	1.6	0.27	0.019	-0.77	1.6	0.28	0.026
	C2H4 (ppbv)	-4.3	10	0.42	0.005	-4.4	10	0.14	0.0018
	C2H2 (ppbv)	-1	2.1	0.53	0.0087	-1	2.1	0.36	0.0062
	SO2 (ppbv)	-0.32	1.4	0.59	0.2	-0.39	1.5	0.43	0.13
	Acetone (ppbv)	-3.2	4.6	0.13	0.0086	-3.2	4.5	0.14	0.011
	HCHO (ppbv)	-7.1	18	0.23	0.0062	-7.2	18	0.12	0.003
	Toluene (ppbv)	-0.44	1.4	0.4	0.0049	-0.44	1.4	0.19	0.0024
	Isoprene (ppbv)	-0.0079	0.23	0.12	0.058	-0.033	0.24	-0.014	-0.0054
	EC (µg/std m3)	-0.53	3.3	0.61	0.29	-0.79	3.7	0.45	0.2
	OA (μg/std m3)	-150.	420.	0.61	0.017	-150.	420.	0.47	0.012
	SO4 (µg/std m3)	-0.12	0.68	0.42	0.18	-0.21	0.73	0.32	0.13
	NH4 (µg/std m3)	-0.59	0.93	0.77	0.35	-0.62	0.96	0.73	0.36
	NO3 (µg/std m3)	-0.56	1.5	0.81	0.61	-0.63	1.6	0.77	0.6
	AOE@550nm (/Mm)	-350.	990.	0.69	0.027	-360.	1000.	0.53	0.015
	J_01D (/s)	-4.00E-07	3.70E-06	0.98	0.84	3.20E-06	5.10E-06	0.97	1,1
	J_NO2 (/s)	-0.0008	0.0016	0.95	0.8	1.10E-05	0.0016	0.93	0.81

Comparison for the whole August, 2019

PBL Height Difference Between Interpolated FV3GFS and WRF-downscaling

Daytime

Nighttime

Monthly Mean PBL Difference (FV3-WRF) at 18UTC

FV3GFSv16 vs. WRFv4.0.3 Surface Meteorology for METAR, August, 2019

2-m Temperature (°C)

2-m Mixing Ratio (g/kg)

10-m Wind Speed (m/s)

WRFv4.0.3

Surface 10-m wind speed comparison over AIRNow Stations

FV3 yields better 10-m wind over Northeast and Pacific coast region. The WRF run tends to overpredict surface wind, especially at night.

Surface ozone predictions show correlations to the 2-meter temperature predictions

Same as last slides but for PM2.5 predictions

Surface PM2.5 predictions have similar trends over Northeast states. Over the Pacific coast, FV3/CMAQ has higher PM2.5 than that of WRF/CMAQ. Both models have more variability compared to observations. WRF-CMAQ yields better correlations.

Summary

- An interpolation based meteorological preprocessor, NACC, is developed from the MCIPv5, and enable us to use global meteorological model FV3/GFS to drive CMAQ5.3.1.
- FIREX-AQ field data show that FV3/CMAQ and WRF/CMAQ have overall similar performance, and their difference were mainly driven by their meteorological model's dynamics and physics.
- NEI2016v1 provided overall reasonable anthropogenic emissions except for SO2, Ethane etc. The GBBEPx wildfire emissions tended to underpredict some species even it captured the fire location and timing.
- Compared to the WRF run, FV3 have stronger PBL diurnal variation, lower 10m wind speed and 2m temperatures, which resulted in lower ozone and PM2.5 over the eastern USA.