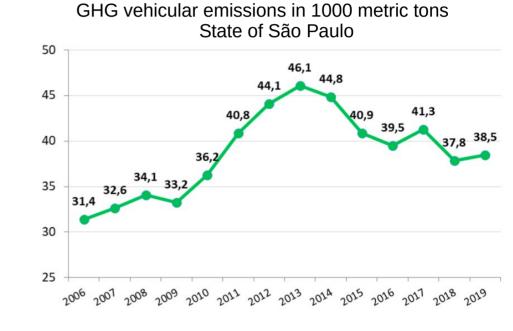
The impact of improving public transportation on decreasing air pollution and greenhouse gases emissions: the case of Sao Paulo, Brazil

Flávia Noronha Dutra Ribeiro (flaviaribeiro@usp.br), Pedro Gerber Machado, Júlio Barboza Chiquetto, Dominique Mouette, Natasha Murgu Valdambrini, Jacyra Soares

Outline

- Context
- Main goal
- Methodology
 - Scenarios
 - Air quality simulations
- Results
 - Emissions
 - Air quality
- Discussion and conclusions

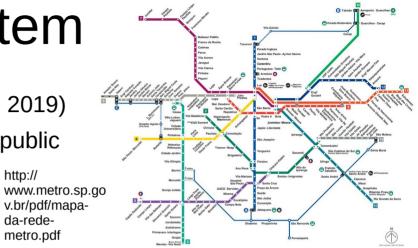

Metropolitan Area of São Paulo

- Air quality in São Paulo 2011-2020
 - PM 2.5: 27 exceedances (757 WHO)
 - Ozone (O₃): 168 exceedances (824 WHO)
- Population: 21 millions inhabitants
- Emissions in 2019 (CETESB, 2020) in 1000 metric tons per year:

Sources	CO	HC	NOx	MP	SOx
Vehicular	112.97	24.89	48.27	1.22	0.72
Industries (2008)	4.18	5.6	26.1	3.57	5.59
Liquid fuel base (2008)		3.68			
Total	117.15	34.17	74.37	4.79	6.31

Metropolitan Area of São Paulo

- Plan for Climate Action (Sao Paulo, 2019) → Paris Agreement:
 - 1) decrease in 45% GHG emissions by 2030 – carbon-free city by 2050;
 - 2) adapt to climate change impacts;
 - 3) provide equity in the distribution of social- environmental improvements.
- Road transportation (CETESB, 2011): 42 % of energy sector in the state in 2008 (37 % of total)


Public Transportation System

- Metro Survey (Origin-Destination) typical day (Metro, 2019)
- 67.3 % motorized travels (30.9 % private cars, 36.4 % public transportation) http://
- Subways and metropolitan trains
- Stations planned but not implemented

	Trips	Share
Subway	3,426,011	6.9%
Train	2,310,117	4.7%
Monorail	8,325	0.02%
Bus	14,449,505	29.1%
Chartered bus	351,980	0.7%
School bus	2,096,603	4.2%
Driving car	7,883,009	15.9%
Passenger in car	3,700,638	7.5%

Mapa do Transporte Metropolitano

Metropolitan Transport Network

Source: Metro (2019)	Trips	Share	
Тахі	507,752	1.0%	
Driving motorcycle	972,864	2.0%	
Passenger in motorcycle	103,270	0.2%	
Bicycle	389,333	0.8%	
Walking	13,349,876	26.9%	
Others	115,142	0.2%	
Total	49,664,424	100.0%	

v.br/pdf/mapada-rede-

metro.pdf

Main goal

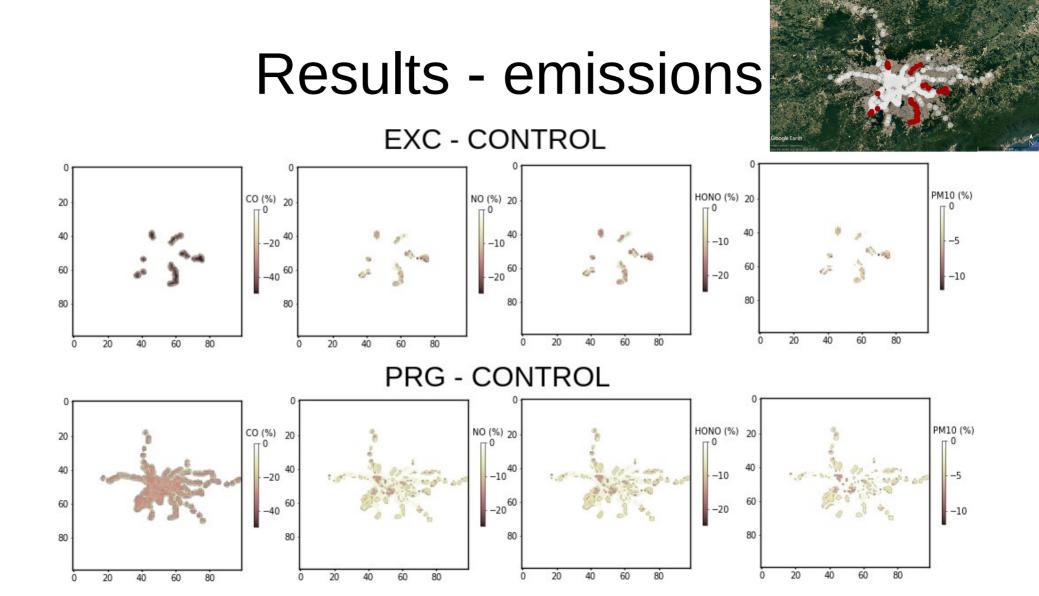
 What are the impacts of transport policies for modal change near subway and metropolitan train stations on air quality and GHG emissions?

Methodology

- Scenarios
- Air quality simulations

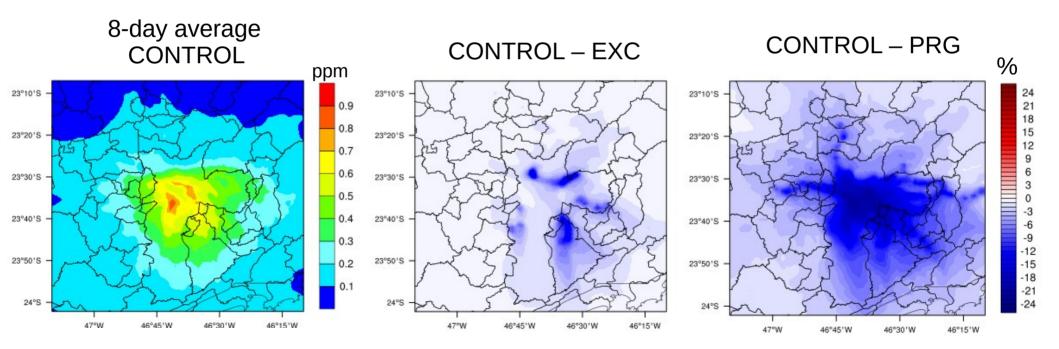
Methodology

- Scenarios
 - CONTROL Vehicular emissions in 2025 (Ribeiro et al., 2021)
 - Excluded from infrastructure (EXC) reduced car emissions near planned stations – 5% of all car trips
 - Progressive (PRG) reduced car emissions near all stations – 18% of all car trips
 - Near = trips that begin and end inside a buffer of 1.3 km ~15 minutes walk
- Air quality simulations

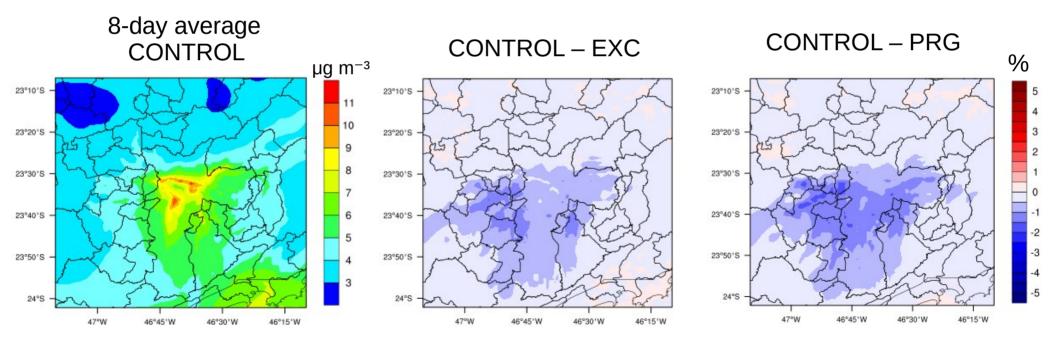

Methodology

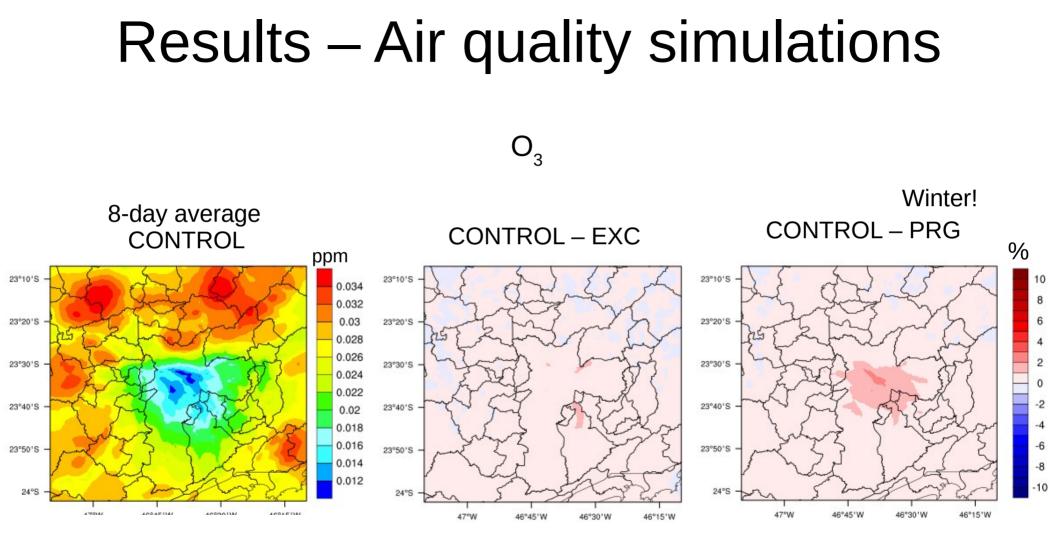
- Scenarios
- Air quality simulations
 - QGIS (2021), Surrogate Tools, and SMOKE (https://cmascenter.org/) were used to spatially and temporally distribute emissions for each scenario (CONTROL, EXC, PRG)
 - WRF-Chem 4.1.2 (Grell et al., 2005): 3 nested domains (15, 3, 1 km horizontal spacing; 100, 101, 100 horizontal grid points; 50 vertical levels)
 - Boundary and initial conditions from MOZART (Emmons et al., 2010) and FNL (NCEP, 2015)
 - chem_opt = 8
 - Period: from 2 Jul 2018 0000 UTC to 10 Jul 2018 0600 UTC

Results

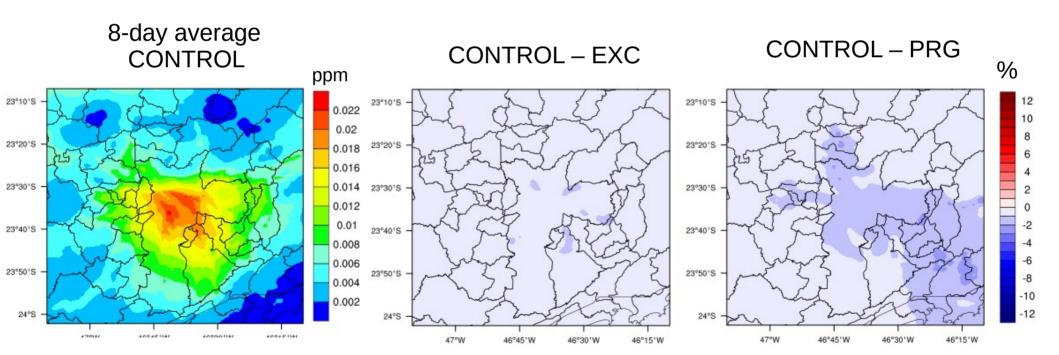

• Vehicular emissions

-									
	Pollutant (short ton)	CONTROL	EXC	PRG					
	CO	100,334	96,570 (-3,7%)	87,929 (-12,4%)					
	NO _x	38,801	35,588 (-8,3%)	34,757 (-10,4%)					
	SO ₂	990	913 (-7,8%)	893 (-9,8%)					
	VOC	17,382	16,701 (-3,9%)	15,184 (-12,6%)					
	РМ	773	704 (-8,9%)	697 (-9,8%)					
	CO _{2eq}	26,150,946	24,782,278 (-5,2%)	23,079,529 (-11,7%)	 Ethanol 				


Results – Air quality simulations


CO

Results – Air quality simulations


PM 2.5

Results – Air quality simulations

NO₂

Discussion and conclusions

- CO_{2eq} vehicular emissions proposed reduction is important, but not sufficient
- Greatest reduction in CO \rightarrow cars
- Ozone shows slight increase in areas where its concentration is lower → in São Paulo a reduction in NO_x would increase O₃ → non-linear (Sánchez-Ccoyllo et al., 2006; Orlando et al., 2010; Chiquetto et al., 2020)

SAN

- Greatest air quality improvement in areas that are neglected → cobenefits
 Just the infrastructure may not ensure emission reductions → other policies needed
- On the other hand, infrastructure is necessary to provide access (1.3 km)
- The whole MASP may benefit from a change in transportation mode from motorized (careful with O₃ precursors)

References

• CETESB (2011).

.

https://cetesb.sp.gov.br/inventario-gee-sp/wp-content/uploads/sites/ 34/2014/01/Primeiro_Inventario_GEE_WEB_Segunda-Edicao-v1.pdf.

- CETESB (2020). *Emissões veiculares no estado de São Paulo 2019*. São Paulo. Available at: https://cetesb.sp.gov.br/veicular/relatorios-e-publicacoes/ (Accessed: 14 June 2021).
- Chiquetto, Júlio Barboza et al. (2020). Ozone Pollution and Urban Mobility Scenarios in the São Paulo Megacity. Ambiente & Sociedade [online]. v. 23, https://doi.org/10.1590/1809-4422asoc20190008r2vu2020L6AO
- Emmons, L.K., S. Walters, P.G. Hess, J.-F. Lamarque, G.G. Pfister, D.
 Fillmore, C. Granier, A. Guenther, D. Kinnison, T. Laepple, J. Orlando, X. Tie, G. Tyndall, C. Wiedinmyer, S.L. Baughcum, S. Kloster. Description and evaluation of the model for ozone and related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev. Discuss., 2 (2010), pp. 1157-1213, 10.5194/gmdd-2-1157-2009
- Grell, G. A. *et al.* (2005). Fully coupled "online" chemistry within the WRF model. *Atmospheric Environment*, 39(37), pp. 6957–6975. doi: 10.1016/j.atmosenv.2005.04.027
- Metro (2019). https://transparencia.metrosp.com.br/dataset/pesquisa-origem-e-destino/resour ce/b3d93105-f91e-43c6-b4c0-8d9c617a27fc (Accessed: 08 Oct 2021).
- National Centers for Environmental Prediction/National Weather
 Service/NOAA/U.S. Department of Commerce. (2015, updated daily). NCEP
 GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids.
 Research Data Archive at the National Center for Atmospheric Research,
 Computational and Information Systems Laboratory.
 https://doi.org/10.5065/D65Q4T4Z. Accessed 01 Aug 2020. doi:
 10.5065/D65Q4T4Z

- Orlando, J. P., Alvim, D. S., Yamazaki, A., Corrêa, S. M., Gatti, L. V. (2010). Ozone precursors for the São Paulo Metropolitan Area. Sci. Total Environ. 408 (7): 1612–1620. https://doi.org/10.1016/j.scitotenv.2009.11.060.
- CETESB (2020) Emissões veiculares no estado de São Paulo 2019. São Paulo. Available at: https://cetesb.sp.gov.br/veicular/relatorios-epublicacoes/ (Accessed 1612–1620. https://doi.org/10.1016/j.scitotenv.2009.11.060.
- QGIS Development Team (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
- Ribeiro, F. N. D., Umezaki, A. S., Chiquetto, J. B., Santos, I., Machado, P. G., Miranda, R. M., ... & Ueno, H. M. (2021). Impact of different transportation planning scenarios on air pollutants, greenhouse gases and heat emission abatement. Science of The Total Environment, 781, 146708.
 - Sánchez-Ccoyllo, O. R., Silva-Dias, L., Andrade, M. de F., Freitas, S. R.
 (2006). Determination of O3-, CO- and PM10-transport in the Metropolitan Area of São Paulo, Brazil through synoptic-scale analysis of back trajectories. Meteorol. Atmos. Phys. 92: 83–93. https://doi.org/10.1007/s00703-005-0139-6
- We acknowledge use of the WRF-Chem preprocessor tool mozbc provided by the Atmospheric Chemistry Observations and Modeling Lab (ACOM) of NCAR.
- Images: Photo by Denys Argyriou on Unsplash, Photo by Ramy Robson on Unsplash

Acknowledgements

 Graduate Program on Sustainability – School of Arts, Sciences, and Humanities (EACH) – University of São Paulo (USP)

Thank you!

- CAPES Coordination of Superior Level Staff Improvement PROAP
- FAPESP São Paulo Research Foundation, grant nº 2017/20148-3

