20th ANNUAL CMAS Conference Nov 1-5 | Virtual

Implementation of Kain-Fritsch convective mixing scheme into CMAQ subgrid cloud modeling

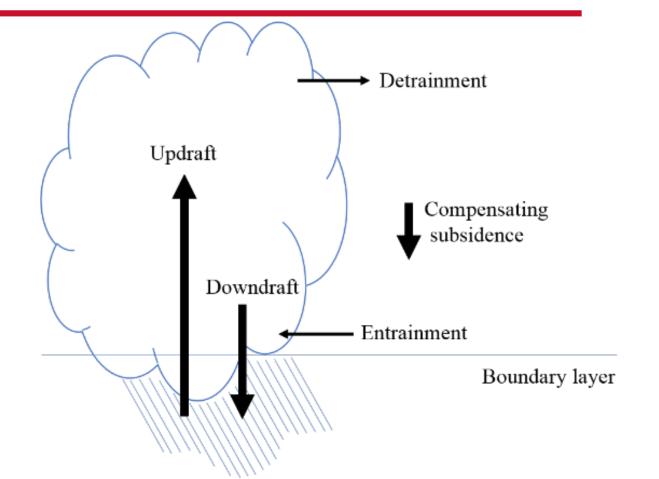
Arman Pouyaei¹(apouyaei@uh.edu), Bavand Sadeghi¹, Yunsoo Choi*¹(ychoi6@uh.edu), Jia Jung¹, Amir H. Souri², Chun Zhao^{3,4}, Chul Han Song⁵

¹ Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA

² Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

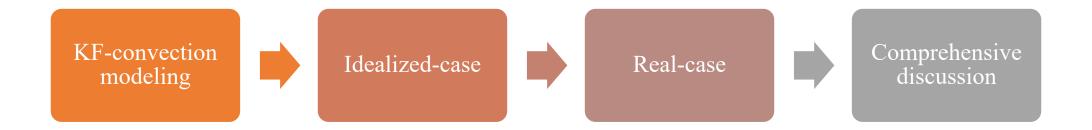
³ School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

⁴ CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, China


⁵ School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea

Introduction:

- CMAQ model resolves the full-grid clouds that occupy the entire grid cell by the meteorological models and parametrizes sub-grid clouds.
- The issue of nonlocal structures
- Physical efficacy in convective mixing
- Consistency of cloud parametrization with meteorological model



UNIVERSITY of HOUSTON

Objectives:

(1) To develop a more physically accurate scheme of sub-grid cloud parameterization and

(2) To enhance the capabilities of the CMAQ model to simulate the vertical distributions of chemical species in the layers of the atmosphere where convection has occurred.

UNIVERSITY of HOUSTON

Standard CMAQ:

• Cloud modeling:

$$\frac{\partial \overline{m_i}}{\partial t}\bigg|_{cld} = \left.\frac{\partial \overline{m_i}}{\partial t}\right|_{subcld} + \left.\frac{\partial \overline{m_i}}{\partial t}\right|_{rescld}$$

• Cloud mixing:

$$\overline{m}_{i}^{cld}(z) = f_{ent} \left[(1 - f_{ent}) \overline{m}_{i}^{down} + f_{side} \overline{m}_{i}(z) \right] + (1 - f_{ent}) \overline{m}_{i}^{up}$$

• Average pollutant concentration:

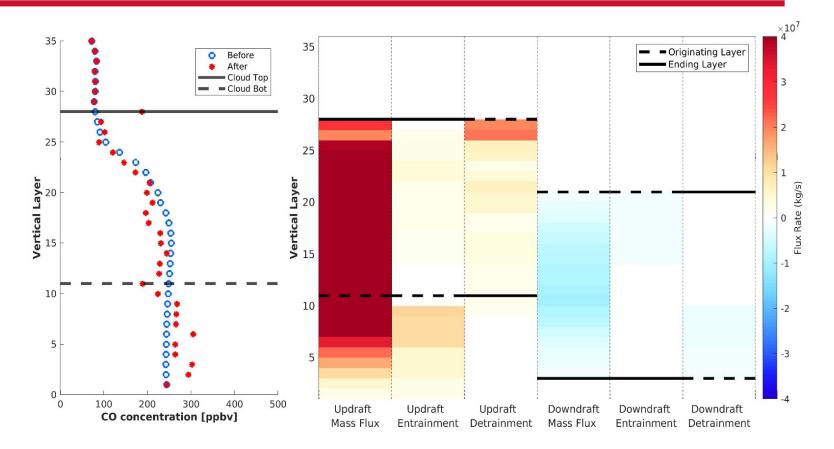
$$\overline{m}_{i}^{cld} = \frac{\int_{z_{cbase}}^{z_{ctop}} \overline{m}_{i}^{cld}(z) W_{c}(z) dz}{\int_{z_{cbase}}^{z_{ctop}} W_{c}(z) dz}$$

UNIVERSITY of HOUSTON

KF-convection:

- Dynamic description of cloud
- Mass flux variables from WRF
- WRF-CMAQ two-way system

	Standard-CMAQ Sub-grid scheme	KF-convection Cloud modeling
Temporal resolution	1 hour	Synchronization time (~6 minutes)
Cloud geometry (definition of the cloud layers and characteristics)	CMAQ parameterization	Utilizes the dynamic model (WRF)
Vertical mixing (air transporting by updraft and downdraft)	CMAQ parameterization	Develops model consistent with the dynamic meteorological model (WRF)
Convection classification	General cloud	Deep and shallow convection


Algorithm: CONV_KF Define Cumulus convection variables Get KF-scheme variables from WRF for i: 1 to NROWS for j: 1 to NCOLS if Deep convection is happening: Compute the updraft effect. Compute the entrainment-detrainment effect. Compute the effect of compensating due to updraft. Compute the downdraft effect. Compute the entrainment-detrainment effect. Compute the effect of compensating due to downdraft. *else if* Shallow convection is happening: Compute the updraft effect. Compute the entrainment-detrainment effect. Compute the effect of compensating due to updraft. End End End the concentrations matrix te tinue to sub-grid cloud scheme

UNIVERSITY of HOUSTON

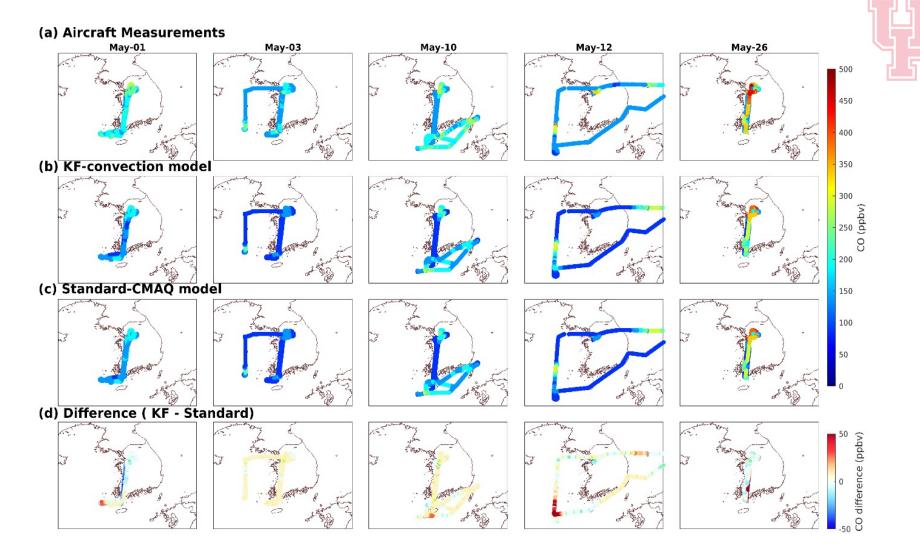
Idealized case:

- $10 \times \text{sync time-steps} = 60 \text{ min}$
- Tested for several different cases
- Presented case: deep convection with both updraft and downdraft fluxes + effects of entrainment, detrainment and subsidence

Difference in concentration profiles caused by KF-convection

Real case:

- East Asia domain
- WRF-CMAQ Two-way framework


Conference the state WDE CMAO Trans and all

Configuration of the WRF-CMAQ Two-way model			
Domain	27x27 East Asia		
Microphysics	Morrison double-moment scheme		
Shortwave/Longwave radiation	RRTM		
PBL model	ACM2		
Surface model	Pleim-Xiu land surface		
Cumulus scheme	Kain-Fritsch		
Chemical mechanism	SaPRC-07 and AERO6		
CMAQ Advection	YAMO and WRF omega		
CMAQ diffusion	Multiscale and ACM2		

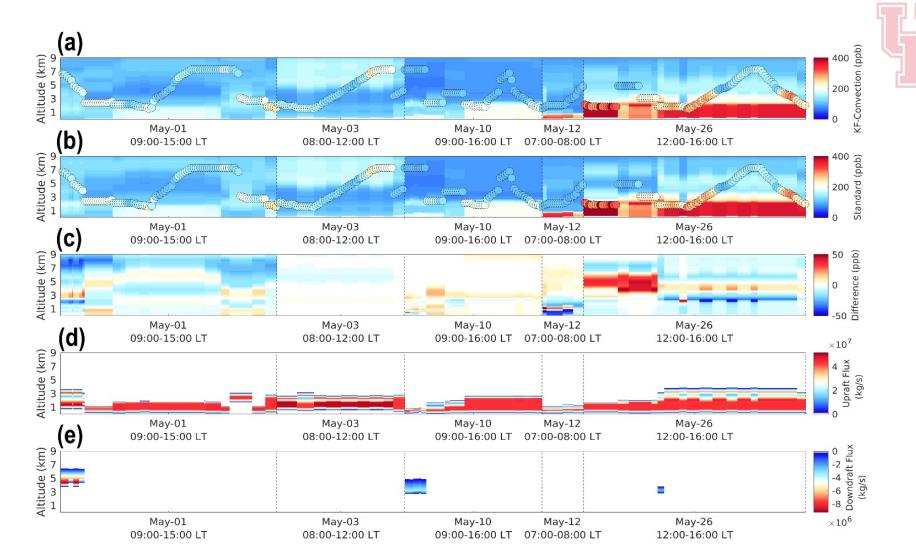
North China Latitude Longitude Standard **KF-convection** Counts Counts 921 Model (ppbv) Model (ppbv) 80 49 30 19 80 Observation (ppbv)

Observation (ppbv)

UNIVERSITY of HOUSTON

Spatial analysis of CO concentrations in aircraft tracks over South Korea on convection days

20th ANNUAL

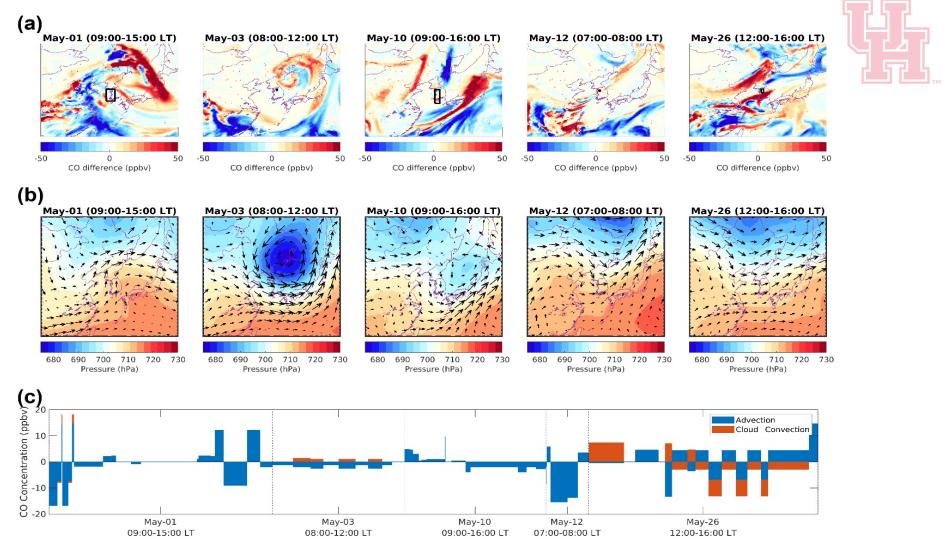


Spatial comparison of the total CO columns for the convection days in May 2016 (May-01, May-03, May-10, May-12, and May-26), averaged over the entire month (May-all)

UNIVERSITY of HOUSTON Department of Earth and Atmospheric Sciences

9

20th ANNUAL



Analysis of the direct impact of KF-convection on days with convection: (a) KF-convection model versus CO measurements of DC8 aircraft (points); (b) Standard-CMAQ model versus CO measurements of DC8 aircraft (points); (c) CO differences; (d) the updraft flux rate; and (e) the downdraft flux.

UNIVERSITY of HOUSTON Department of Earth and Atmospheric Sciences

10

20th ANNUAL

Analysis of the indirect impact of KF-convection on days with convection at 3 km altitude, (a) CO differences between models, (b) the averaged wind pattern and pressure field, (c) Process Analysis results.

11

20th ANNUAL

Summary:

- KF-Convection model:
 - More physically accurate convective mixing
 - Consistent with meteorology model
 - Improved vertical profiles of concentrations
 - Improved long-range transport of pollutants

• The developed model can be employed in large domains (i.e., East Asia, Europe, North America, and Northern Hemisphere) with sub-grid scale cloud modeling to include the impacts of convection.

Code availability:

• Detailed description of the model:

https://doi.org/10.1029/2021MS002475

• The developed model source code:

https://doi.org/10.5281/zenodo.4724239

• This study was funded by the National Research Foundation of Korea (NRF). Grant Number: 2020M3G1A1114619

JAMES Journal of Advances in Modeling Earth Systems*

Research Article 🖞 Open Access 💿 😧 🗐 🏵

Development and Implementation of a Physics-Based Convective Mixing Scheme in the Community Multiscale Air Quality Modeling Framework

Arman Pouyaei, Bavand Sadeghi, Yunsoo Choi 🔀, Jia Jung, Amir H. Souri, Chun Zhao, Chul Han Song,

First published: 04 June 2021 | https://doi.org/10.1029/2021MS002475

Thank you for your attention!

Contact information:

Email: <u>apouyaei@uh.edu</u>

LinkedIn: https://www.linkedin.com/in/arman-pouyaei-935b2635/

UNIVERSITY of HOUSTON

