

Application of a Partial Convolutional Neural Network for Estimating Missing TROPOMI NO₂ Remote Sensing Information

Yannic Lops¹, Arman Pouyaei¹, Masoud Ghahremanloo¹, Yunsoo Choi^{1*}, Jia Jung¹

Presenter: Yannic Lops

Department of Earth and Atmospheric Sciences, University of Houston
 *Corresponding Author: ychoi23@central.uh.edu

CMAS Conference, November 2021

Motivation of Study

- Data Assimilation of remote sensing data to improve CMAQ accuracy
- Remote sensing datasets impacted by:
 - cloud cover contamination
 - false reflectance
 - significant biases within the data
 - sensor errors corrupt data
- Solutions?
 - Averaging \rightarrow reduce the temporal resolution
 - Imputation \rightarrow uncertainties and computational cost

Study Area – CONUS Region

Spatio-Temporal Partial CNN Imputation System

Data Set-up – CMAQ Data Augmentation

- 3-step data augmentation
 - Application of white noise feature/mask on CMAQ image
 - Image augmentation of processed CMAQ image
 - Application of randomly selected missing TROPOMI data mask
- Increases training samples
- Reduces overfitting
- Improves model robustness

Depthwise Partial CNN Architecture

Model Comparisons

- Evaluate model performances based on weekly mean of NO₂ column data and receive the respective daily masks
- Non-spatio-temporal imputation models = less consistent
- Patio-temporal imputation models = more consistent

UNIVERSITY of HOUSTON Department of Earth and Atmospheric Sciences

Model Comparisons – Statistics (2019)

Model Comparisons – Statistics (2020)

Partial CNN Comparisons – Mask Padding

DEPTHWISE PARTIAL CNN

UNIVERSITY of HOUSTON **Department of Earth and Atmospheric Sciences**

REGULAR PARTIAL CNN

Summary

- Application depthwise convolutions facilitate the performance of the model's imputation capability with spatio-temporal data
- CMAQ model data with image augmentation is sufficient for the Depthwise Partial CNN to accurately
 imputing remote sensing data and be generalized for the purpose

• The system can:

- Efficiently, and in near-real-time, impute TROPOMI images
- Impute image at varying sizes and amounts of missing data from what it was trained with
- Improve CMAQ simulations with data assimilation → better CMAQ simulations and accuracy → further improve PCNN model for imputation

Acknowledgements

The research has been supported through funding from the Oak Ridge Associated Universities (ORAU) Directed Research and Development

Thank you for your Attention

Questions?