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Motivation of Study

= Data Assimilation of remote sensing data to improve CMAQ accuracy

= Remote sensing datasets impacted by:
= cloud cover contamination
= false reflectance
= significant biases within the data

® Sensor errors corrupt data
= Solutions?

= Averaging - reduce the temporal resolution

* I[mputation = uncertainties and computational cost
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Study Area — CONUS Region

Contiguous United States
Ty
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Spatio-Temporal Partial CNN Imputation System
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Data Set-up — CMAQ Data Augmentation

Original CMAQ Image

Pixel Augmented Image

= 3-step data augmentation

= Application of white noise
feature/mask on CMAQ image

" Image augmentation of
processed CMAQ image

= Application of randomly selected
missing TROPOMI data mask

F

" |ncreases training samples
= Reduces overfitting

= Improves model robustness
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Depthwise Partial CNN Architecture
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Sample 1 Sample 2 B Sample3

Model , _
Comparisons S

Input

IDW

r0.6

= Evaluate model performances
based on weekly mean of NO,
column data and receive the
respective daily masks

Default PCNN

0.2

HCHO (10'® molecules/cm?

= Non-spatio-temporal imputation
models = less consistent

PCNN w/ ST data

New PCNN

= Patio-temporal imputation
models = more consistent

Mean Image
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Model Comparisons — Statistics (2019)

IOA r Lo > 10% NaN 5% - 10% NaN < 5% NaN

=
=]

50-8‘% = ; F'IT y_'|_\ ] o _ |
T TTT R& éﬁ%% il % (L :
: _1915 MAE 1e1s RMSE %2 : D

Lower is Better

<
w

> I ——

0.2

% T

% HI—

(T

T
I—

T —

)

S S O S
< = ] < <] <
Qc}gé o\b Q§ Q(_;g\\ o\b Q§ Q(}ié o\b Q§ Q(}gé o\b Q(}\% Q(}\ o\b Q§
> 2 > - > W > W >
& > & S & S & S 2 S

UNIVERSITY of HOUSTON

Department of Earth and Atmospheric Sciences



Model Comparisons — Statistics (2020)
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Partial CNN Comparisons — Mask Padding

DEPTHWISE PARTIAL CNN
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REGULAR PARTIAL CNN
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Summary

= Application depthwise convolutions facilitate the performance of the model’s imputation capability with
spatio-temporal data

= CMAQ model data with image augmentation is sufficient for the Depthwise Partial CNN to accurately
imputing remote sensing data and be generalized for the purpose

= The system can:
= Efficiently, and in near-real-time, impute TROPOMI images
® |[mpute image at varying sizes and amounts of missing data from what it was trained with

= Improve CMAQ simulations with data assimilation = better CMAQ simulations and accuracy = further improve
PCNN model for imputation
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