Using CrIS Ammonia Observations to Improve Decision Making on PM_{2.5} Control Policies

Nick Heath¹, Matthew Alvarado¹, Amy McVey¹, Chase Calkins¹, Karen Cady-Pereira¹, Jeana Mascio¹, Mark Shephard², Michael Sitwell², Jonathan Pleim³, Limei Ran⁴, Hansen Cao⁵, Daven Henze⁵

¹Atmospheric and Environmental Research
²Environment and Climate Change Canada
³U.S. Environmental Protection Agency
⁴U.S. Department of Agriculture
⁵University of Colorado, Boulder

Overall Project Goal

Use CrIS observations in a FDMB inversion to provide more accurate NH_3 emissions to AQ forecasters, AQ managers, and other stakeholders to improve decision-making on $PM_{2.5}$

CrIS Can Identify NH₃ Sources

 CrIS Satellite NH₃ warm season (Apr. – Sept., 2013) average surface map, with corresponding AMoN surface network measurements overlaid.

Schematic Overview of Project Workflow

Beta is Sensitivity of Simulated Surface Concentrations to Emissions Perturbations

$$\frac{\Delta E}{E_a} = \beta \left(\frac{\Delta \Omega}{\Omega_a}\right) \qquad \frac{\beta \text{ Limit}}{0.1 - 10}$$

- ΔE = Change in emissions (perturbed minus base)
- E_a = Base emissions
- $\Delta \Omega$ = Change in surface concentration
- Ω_a = Baseline surface concentration

Beta is Sensitivity of Simulated Surface Concentrations to Emissions Perturbations

$$\frac{\Delta E}{E_a} = \beta \left(\frac{\Delta \Omega}{\Omega_a}\right) \qquad \frac{\beta \text{ Limit}}{0.1 - 10}$$

Beta calculation performed separately for each perturbation (bidi input and all other NH₃ from SMOKE emissions)

June 2015 Prototype Simulations

• NOAH LSM

<u>WRF</u> <u>v3.8</u>

- AER RRTMG Radiation
- Grell Freitas Cumulus

- CONUS 12 km dom.
- CB6r3
 Chemical
 Mech.
- AE7 Aerosols
- NEI 2011 Emissions

CMAQ Base Monthly-Averaged Surface Conc (ppb)

Difference (CMAQ minus CrIS)

Final Emissions Scaling Factor Applied to Bidirectional Flux Input

Final Emissions Scaling Factor Applied to All Other NH₃ Input

CMAQ Base Monthly-Averaged Surface Conc (ppb)

Difference (CMAQ minus CrIS)

CMAQ Sfc-Inv Monthly-Averaged Surface Conc (ppb)

Difference (CMAQ minus CrIS)

Multiple iterations will be used for final emissions estimates

Evaluation with Independent Dataset

CMAQ BASE Comparison with AMoN

CMAQ Iteration 1 – Surface Inversion Comparison with AMoN

Summary

- This work will provide improved NH₃ emission inventories to air quality forecasters, managers, and other stakeholders.
- Prototype application of the inversion using bidirectional NH₃ flux for June 2015 proved successful. The process improved comparisons with CrIS and an independent dataset, AMoN.
- Future work is focusing on AWS automation, updating SMOKE, and building the final code for end-users to apply the data in their model.

