

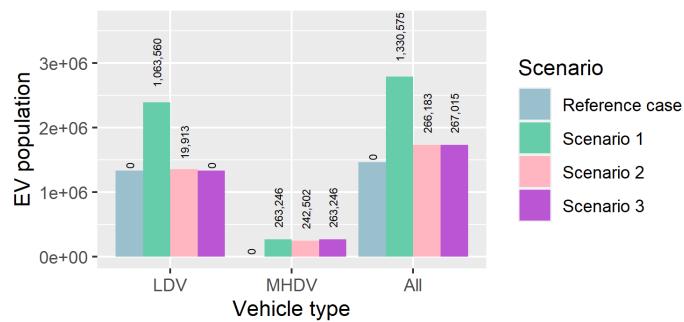
Air Quality Benefit from Accelerated EV Penetration in Southern California: A Case Study in the Interstate 710 Corridor

By Shih Ying "Changsy" Chang¹, Jiaoyan Huang¹, Marcus Alexander², Doug Eisinger¹, Nathan Pavlovic¹, and Eladio Knipping²

¹ Sonoma Technology | ² Electric Power Research Institute

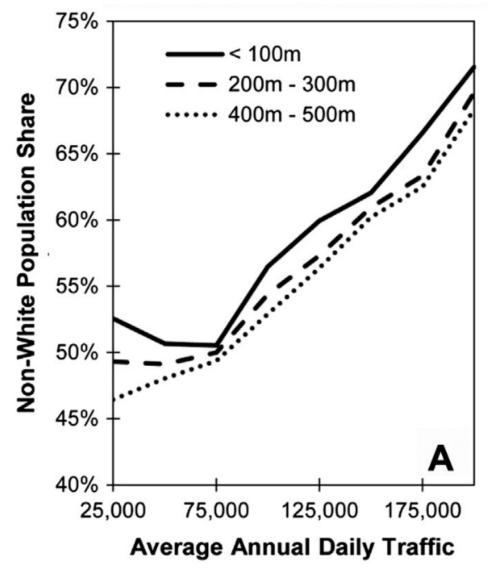
For the 2021 CMAS conference

Nov. 4, 2021


600600-7613

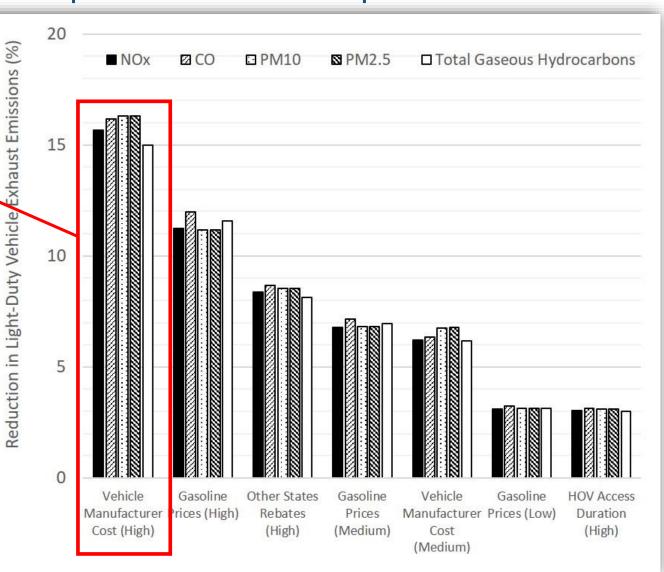
Outline

Introduction


- Emission modeling results
- Study design and domain Summary
- Method

Projected electric vehicle (EV) population in the South Coast region of California in 2040

Air Quality and Environmental Justice (EJ)

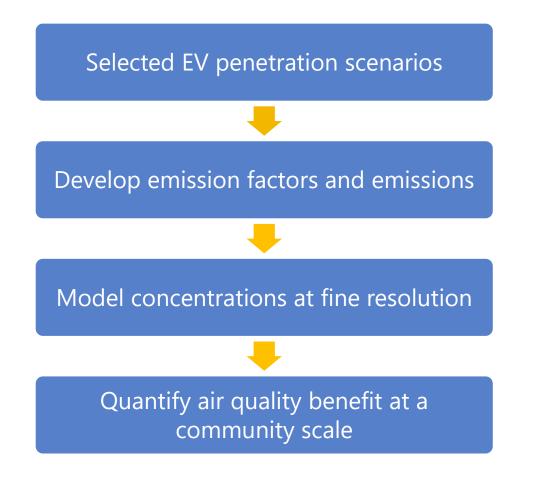

- Approximately 19% of the U.S. population lives near high-traffic volume roads
- Previous studies found that living near major roadways is associated with respiratory diseases
- Nationally, greater traffic volume and density are associated with <u>larger numbers of non-white</u> <u>residents and lower median</u> <u>household incomes</u>

Source: Rowangould, Transport Research Part D, 2013

Penetration of Electric Vehicles: Example Forecasted Impacts

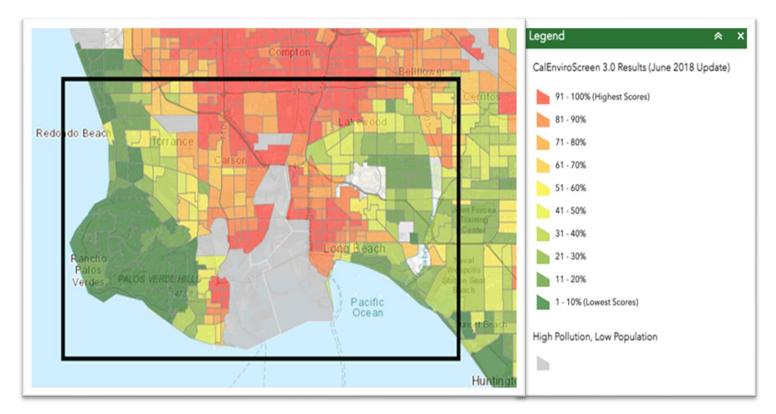
- Penetration of 38% electric vehicles (EVs) in the light-duty vehicle (LDV) fleet could reduce NO_x and PM_{2.5} emissions by up to 16% for the light-duty vehicle fleet by 2040 (Erdakos et al. 2019)
- California Air Resource Board (CARB) estimated 15% NOx and PM_{2.5} emissions reductions for the medium- and heavyduty vehicle fleet by 2040 under the Advance Clean Truck (ACT) regulation

Source: http://www.trb.org/Main/Blurbs/180232.aspx


Motivation

- Substantial penetration of electric vehicles (EVs) is expected to reduce GHG emissions and yield important public health benefits
- There is, however, an ongoing need to quantify EJ community impacts from EV use
- This study evaluates EV penetration scenarios and resulting air quality benefits
- A key goal was to quantify and contrast outcomes for communities with and without EJ concerns

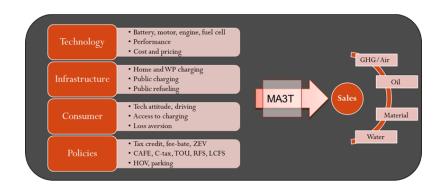
Study Design


- Identify a series of EV penetration scenarios for:
 - Light-duty vehicle (LDV) fleet
 - Medium- and heavy- duty vehicle (MHDV) fleet
- Estimate on-road mobile source emission factors and emissions for each scenario
- Model NO_x and PM_{2.5} concentrations from on-road vehicles at census block group^{*} centroids
- Quantify and contrast benefits between communities with and without EJ concerns for 2040

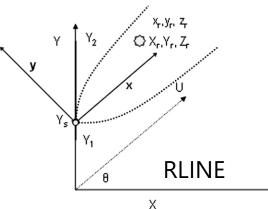
*A Census Block Group is a geographical unit used by the United States Census Bureau which is between the Census Tract and the Census Block.

Study Domain

- Includes the area that covers the I-710 corridor and the Port of Long Beach, as well as neighboring communities.
 - High truck volume (up to 16% of annual average daily traffic in 2019)
 - Covers communities with and without EJ concerns
- In 2017, a near-road monitor within this domain had:
 - The highest PM_{2.5} levels in the nation (Mukherjee et al., 2020)
 - The second highest near-road PM_{2.5} increments (i.e., contributions from on-road vehicles) (Mukherjee et al., 2020)

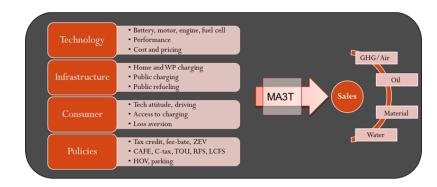


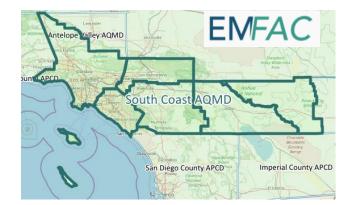
The census tracts in red represent potential communities with EJ concerns Source: <u>https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30</u>

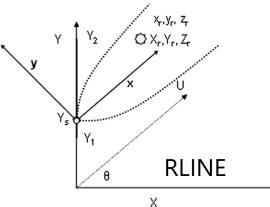

Method Overview

EV population modeling

- Light duty vehicle (LDV) fleet:
 - Tool: Market Acceptance of Advanced Automotive Technologies (MA³T)
 - Only consider battery electric vehicles (BEVs)
- Medium- and heavy-duty vehicle (MHDV) fleet:
 - Advance Clean Truck (ACT): CARB's policy analysis spreadsheet of regulations that will accelerate EV penetration in medium and heavy-duty fleet
 - Advance Clean Fleet (ACF): CARB's presentation using South Coast as an example


Method Overview

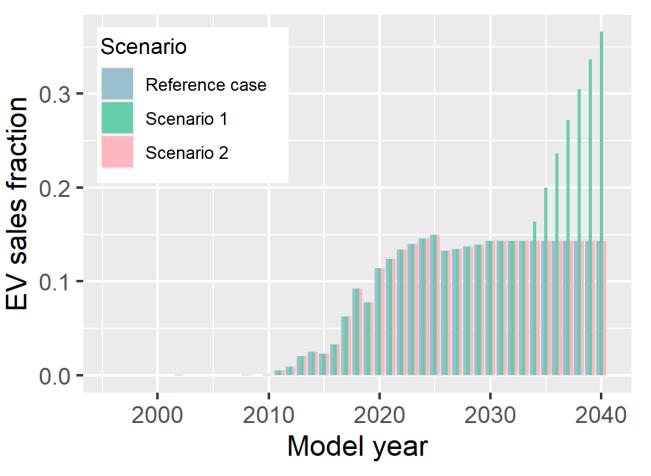

Emissions modeling


- CARB's EMission FACtor (EMFAC) for area under South Coast Air Quality Management District (AQMD) jurisdiction
- EMFAC postprocessing to adopt additional EV penetration from each scenario
 - For brake wear, the emissions from EVs are half of those from ICE vehicles due to regenerative braking

Air Quality modeling

- Urban background: Inverse distance weighting (IDW) using AirNow monitoring data
- Concentration from on-road source: Research LINE (RLINE) source model (Snyder et al., 2013)

EV Penetration Scenarios


Scenario	Policies that Impact Light-Duty Fleet	Policies that Impact Medium- and Heavy-Duty Fleet
0. Reference case [*]	No further policies to accelerate EV penetration	No further policies to accelerate EV penetration
1. High emissions reduction	The cost to manufacture light-duty EVs is comparable to internal combustion conventional vehicles starting in 2030	Advanced Clean Truck (ACT) and Advanced Clean Fleet (ACF) regulations
2. Medium emissions reduction	Medium gasoline price increases \$0.07 per gallon a year beginning in 2019	ACT regulation
3. Emission reduction for MHDVs only	No further policies to accelerate EV penetration	ACT and ACF regulations

*The reference case includes adopted policies that are embedded in EMFAC 2017 with updated lightduty EV population based on EMFAC2021 light-duty EV sales fraction. EMFAC 2021 includes the ACT policy and therefore is not suitable for establishing the reference case.

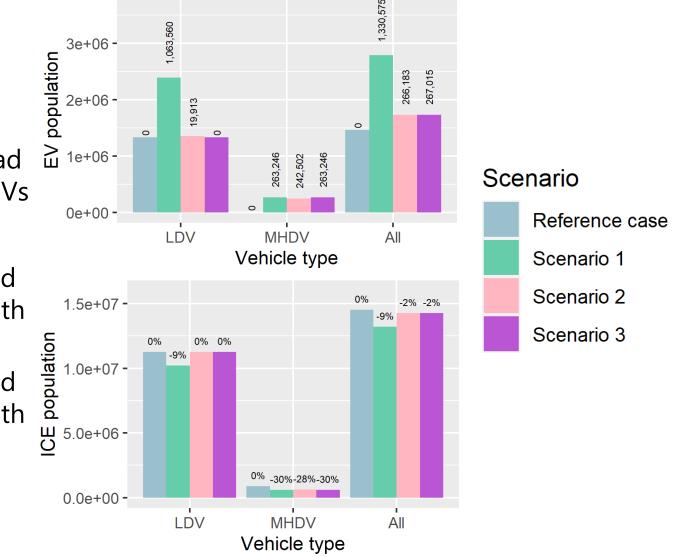
EV Penetration Modeling for Calendar Year 2040

- Scenario specific EV % by model year is calculated from:
 - MA³T for LDV fleet
 - ACT and ACF regulations for mediumand heavy- duty fleet
- If the modeled EV % is less than EMFAC default EV %, no additional EV penetrated the fleet
- Example of EV penetration modeling: light duty passenger car

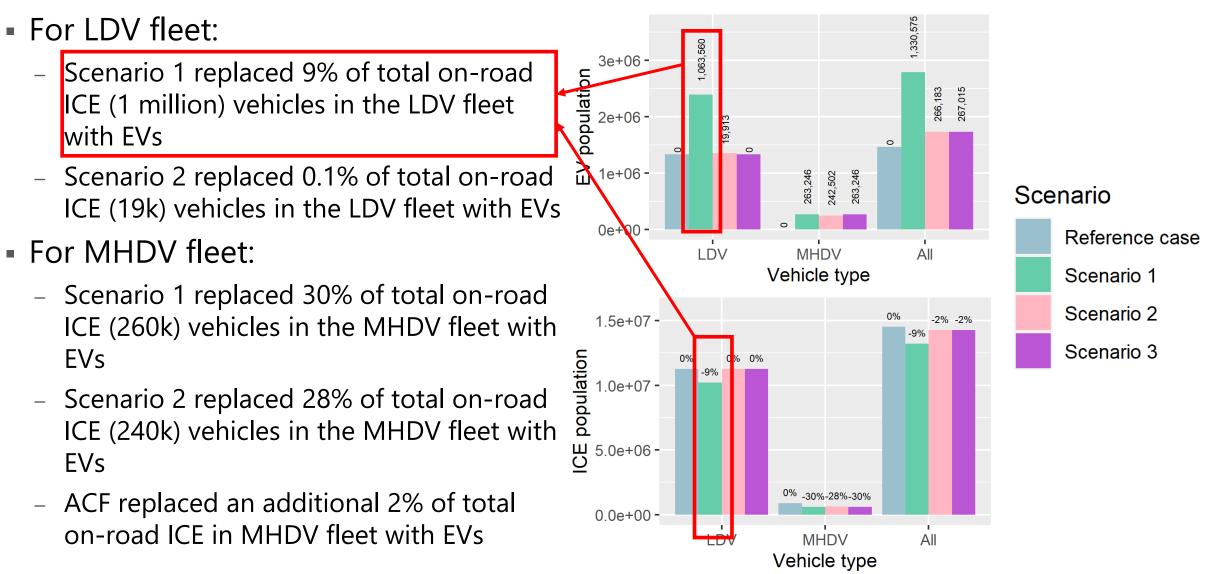
Light-duty passenger car

EV Penetration Modeling for Calendar Year 2040

- Scenario specific EV % by model year is calculated from:
 - MA³T for LDV fleet
 - ACT and ACF regulations for mediumand heavy- duty fleet
- If the modeled EV % is less than EMFAC default EV %, no additional EV penetrated the fleet
- Example of EV penetration modeling: heavy-heavy duty public truck (one out of 29 EMFAC medium- and heavy-duty trucks)
 - High EV penetration with ACT + ACF regulation


1.00 1.00 0.75 0.50 0.25 0.00

Heavy-heavy duty public truck

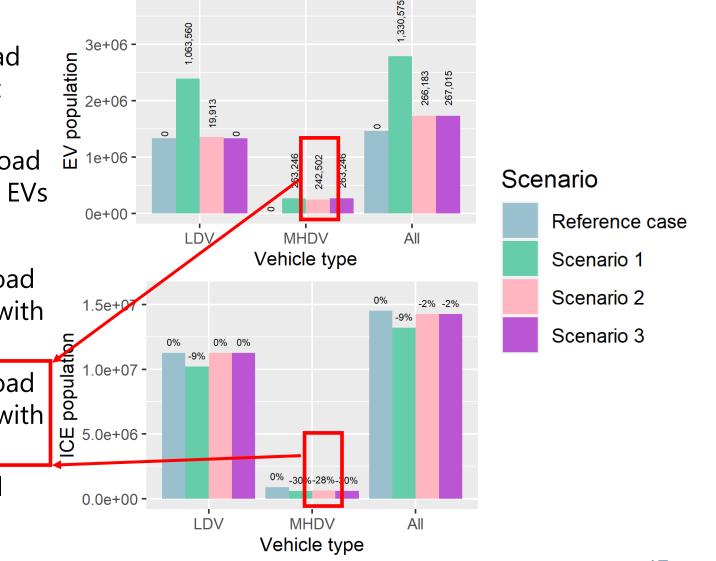

Heavy-heavy duty: gross vehicle weight rating (GVWR) > 33,000 lbs Public truck: ARB defines "public trucks" as trucks owned by California state or local government

- For LDV fleet:
 - Scenario 1 replaced 9% of total on-road ICE (1 million) vehicles in the LDV fleet with EVs
 - Scenario 2 replaced 0.1% of total on-road
 ICE (19k) vehicles in the LDV fleet with EVs
- For MHDV fleet:
 - Scenario 1 replaced 30% of total on-road
 ICE (260k) vehicles in the MHDV fleet with
 EVs
 - Scenario 2 replaced 28% of total on-road ICE (240k) vehicles in the MHDV fleet with EVs
 - ACF replaced an additional 2% of total on-road ICE in MHDV fleet with EVs

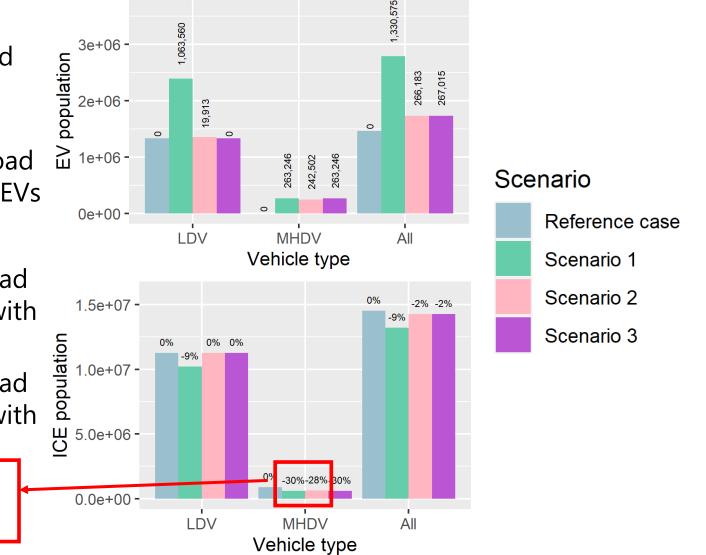
^{*}ICE: Internal combustion engine

*ICE: Internal combustion engine

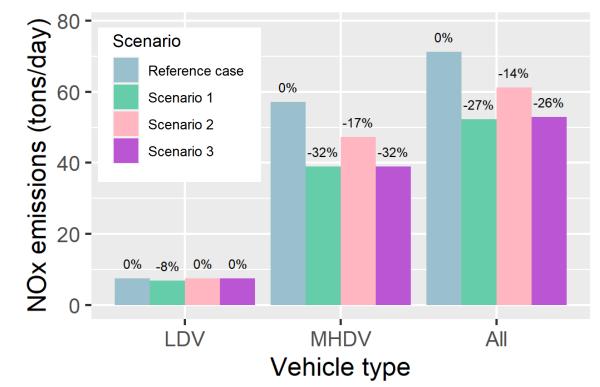
For LDV fleet: 3e+06 -– Scenario 1 replaced 9% of total on-road oopulation 266,183 267,015 ICE (1 million) vehicles in the LDV fleet 2e+06with EVs 0 1е+06-Scenario 2 replaced 0.1% of total on-road 263,246 263,246 242,502 Scenario ICE (19k) vehicles in the LDV fleet with EVs 0e+00 -Reference case For MHDV fleet: MHDV All LDV Vehicle type Scenario 1 – Scenario 1 replaced 30% of total on-road Scenario 2 1.5e+0 ICE (260k) vehicles in the MHDV fleet with -2% -2% Scenario 3 EVs population 1.0e+07 -- Scenario 2 replaced 28% of total on-road ICE (240k) vehicles in the MHDV fleet with Ш 5.0е+06-EVs -30%-28%-30% ACF replaced an additional 2% of total 0.0e+00on-road ICE in MHDV fleet with EVs MHDV All LDV


Vehicle type

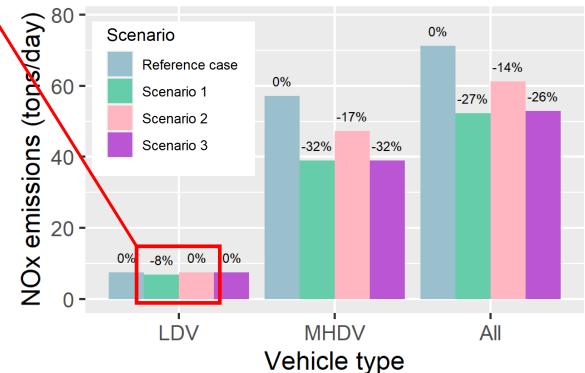
- For LDV fleet:
 - Scenario 1 replaced 9% of total on-road ICE (1 million) vehicles in the LDV fleet with EVs
 - Scenario 2 replaced 0.1% of total on-road
 ICE (19k) vehicles in the LDV fleet with EVs
- For MHDV fleet:
 - Scenario 1 replaced 30% of total on-road
 ICE (260k) vehicles in the MHDV fleet with
 EVs
 - Scenario 2 replaced 28% of total on-road
 ICE (240k) vehicles in the MHDV fleet with
 EVs
 - ACF replaced an additional 2% of total on-road ICE in MHDV fleet with EVs


^{*}ICE: Internal combustion engine

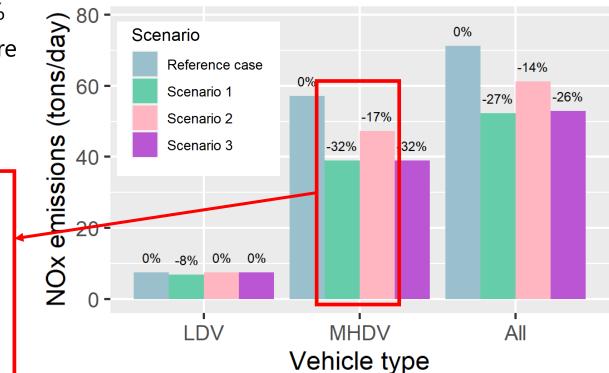
- For LDV fleet:
 - Scenario 1 replaced 9% of total on-road ICE (1 million) vehicles in the LDV fleet with EVs
 - Scenario 2 replaced 0.1% of total on-road
 ICE (19k) vehicles in the LDV fleet with EVs
- For MHDV fleet:
 - Scenario 1 replaced 30% of total on-road
 ICE (260k) vehicles in the MHDV fleet with
 EVs
 - Scenario 2 replaced 28% of total on-road
 ICE (240k) vehicles in the MHDV fleet with
 EVs
 - ACF replaced an additional 2% of total on-road ICE in MHDV fleet with EVs

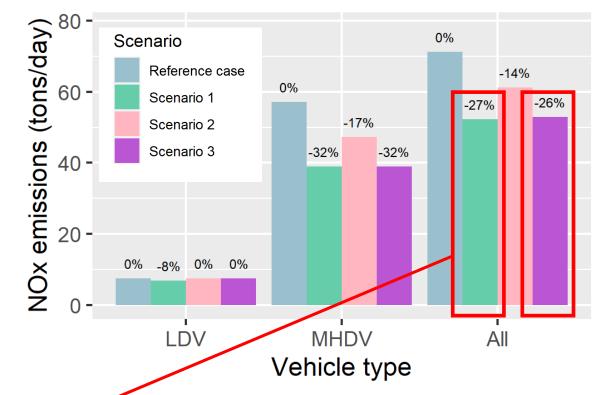

*ICE: Internal combustion engine

- For LDV fleet:
 - Scenario 1 replaced 9% of total on-road ICE (1 million) vehicles in the LDV fleet with EVs
 - Scenario 2 replaced 0.1% of total on-road
 ICE (19k) vehicles in the LDV fleet with EVs
- For MHDV fleet:
 - Scenario 1 replaced 30% of total on-road
 ICE (260k) vehicles in the MHDV fleet with
 EVs
 - Scenario 2 replaced 28% of total on-road ICE (240k) vehicles in the MHDV fleet with EVs
 - ACF replaced an additional 2% of total on-road ICE in MHDV fleet with EVs

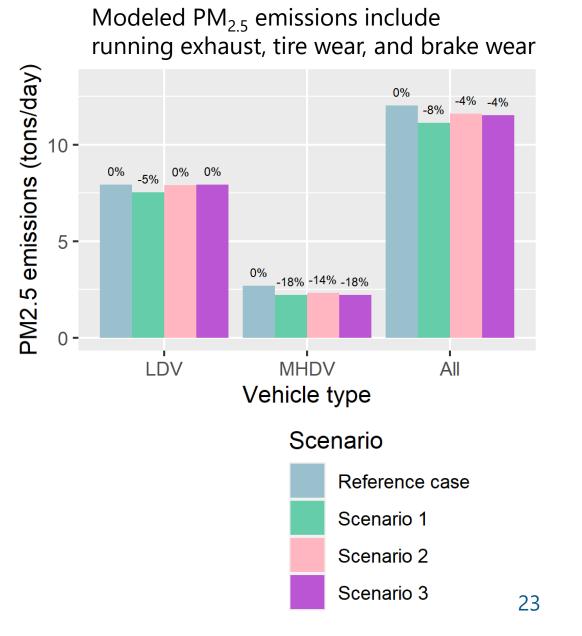


*ICE: Internal combustion engine

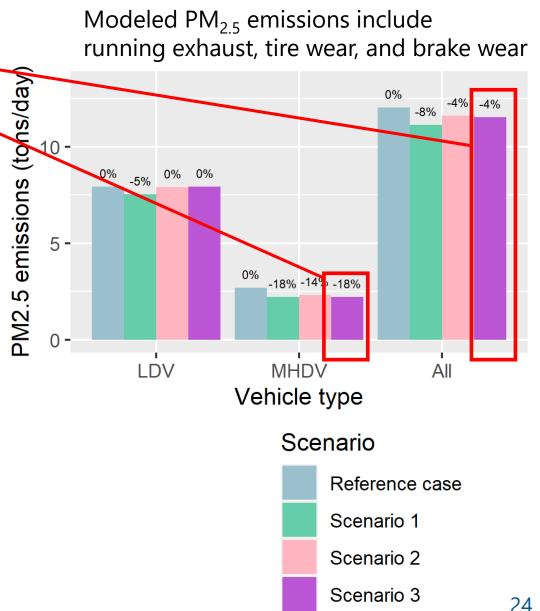

- For LDV fleet:
 - Scenario 1 reduced LDV NO_x emissions by 8%
 - Scenario 2 reduced LDV NO_x emissions by 0.3%
 - Policies that affect earlier model years gain more emissions benefits because earlier model-year vehicles emit more pollutants
- For MHDV fleet:
 - Scenario 1 (ACT + ACF) reduced MHDV NO_x emissions by 32%
 - Scenario 2 (ACT only) reduced MHDV NO_x emissions by 17%
 - The additional 2% of ICE replaced with ACF resulted in an additional 15% NO_x emissions reduction
- Because on-road NO_x emissions are dominated by the MHDV fleet, EV penetration into the LDV fleet has less impact on NOx emissions reduction


- For LDV fleet:
 - Scenario 1 reduced LDV NO_x emissions by 8%
 - Scenario 2 reduced LDV NO_x emissions by 0.3%
 - Policies that affect earlier model years gain more emissions benefits because earlier model-year vehicles emit more pollutants
- For MHDV fleet:
 - Scenario 1 (ACT + ACF) reduced MHDV NO_x emissions by 32%
 - Scenario 2 (ACT only) reduced MHDV NO_x emissions by 17%
 - The additional 2% of ICE replaced with ACF resulted in an additional 15% NO_x emissions reduction
- Because on-road NO_x emissions are dominated by the MHDV fleet, EV penetration into the LDV fleet has less impact on NOx emissions reduction

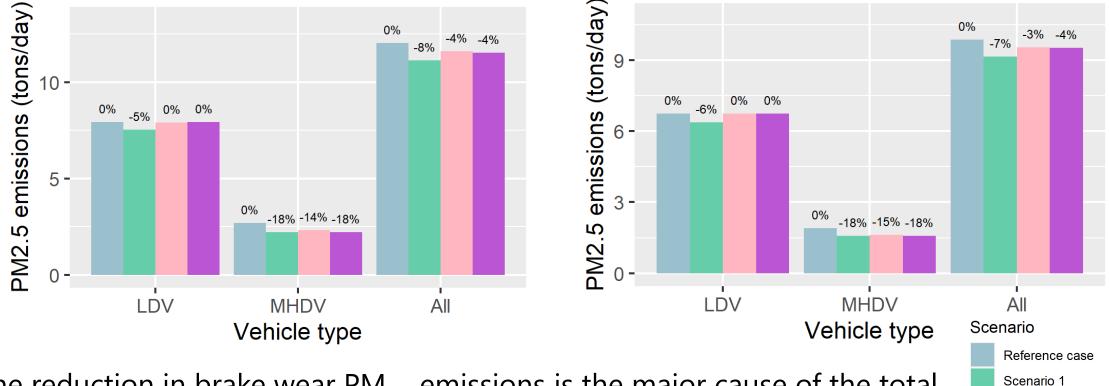
- For LDV fleet:
 - Scenario 1 reduced LDV NO_x emissions by 8%
 - Scenario 2 reduced LDV NO_x emissions by 0.3%
 - Policies that affect earlier model years gain more emissions benefits because earlier model-year vehicles emit more pollutants
- For MHDV fleet:
 - Scenario 1 (ACT + ACF) reduced MHDV NO_x emissions by 32%
 - Scenario 2 (ACT only) reduced MHDV NO_x emissions by 17%
 - The additional 2% of ICE replaced with ACF resulted in an additional 15% NO_x emissions reduction
- Because on-road NO_x emissions are dominated by the MHDV fleet, EV penetration into the LDV fleet has less impact on NOx emissions reduction



- For LDV fleet:
 - Scenario 1 reduced LDV NO_x emissions by 8%
 - Scenario 2 reduced LDV NO_x emissions by 0.3%
 - Policies that affect earlier model years gain more emissions benefits because earlier model-year vehicles emit more pollutants
- For MHDV fleet:
 - Scenario 1 (ACT + ACF) reduced MHDV NO_x emissions by 32%
 - Scenario 2 (ACT only) reduced MHDV NO_x emissions by 17%
 - The additional 2% of ICE replaced with ACF resulted in an additional 15% NO_x emissions reduction
- Because on-road NO_x emissions are dominated by the MHDV fleet, EV penetration into the LDV fleet has less impact on NOx emissions reduction


PM_{2.5} Emission (Tons/Day) in 2040 by Scenario for South Coast Fleet

- In contrast to NO_x emissions, by 2040, LDVs contribute most of the on-road PM_{2.5} emissions, making the benefits of electric MHDVs less impactful
- By 2040, brake wear is the major emission process contributing to on-road PM_{2.5} (Reid et al. 2016)
- Embedded EMFAC assumptions key to analysis findings
 - EV penetration does not affect tire-wear emissions
 - EV brake wear emissions are half of ICE brake wear emissions
 - EV penetration significantly reduces running exhaust emissions

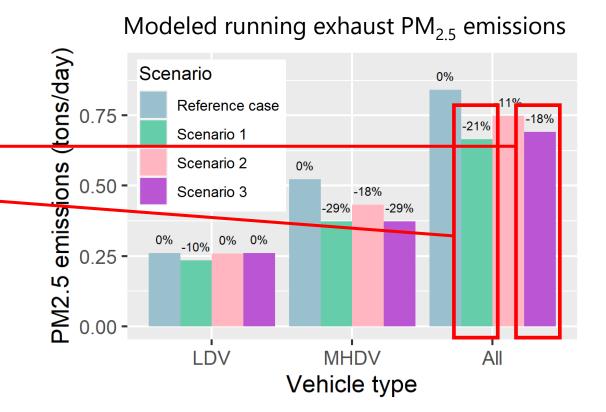

PM_{2.5} Emission (Tons/Day) in 2040 by Scenario for South Coast Fleet

- In contrast to NO_x emissions, by 2040, LDVs contribute most of the on-road PM_{2.5} emissions, making the benefits of electric MHDVs less impactful
- By 2040, brake wear is the major emission process contributing to on-road PM_{2.5} (Reid et al. 2016)
- Embedded EMFAC assumptions key to analysis findings
 - EV penetration does not affect tire-wear emissions
 - EV brake wear emissions are half of ICE brake wear emissions
 - EV penetration significantly reduces running exhaust emissions

PM_{2.5} Running Exhaust Emission (Tons/Day) in 2040 by Scenario for South Coast Fleet

Modeled PM_{2.5} emissions include running exhaust, tire wear, and brake wear

The reduction in brake wear $PM_{2.5}$ emissions is the major cause of the total $PM_{2.5}$ reduction


Scenario 2

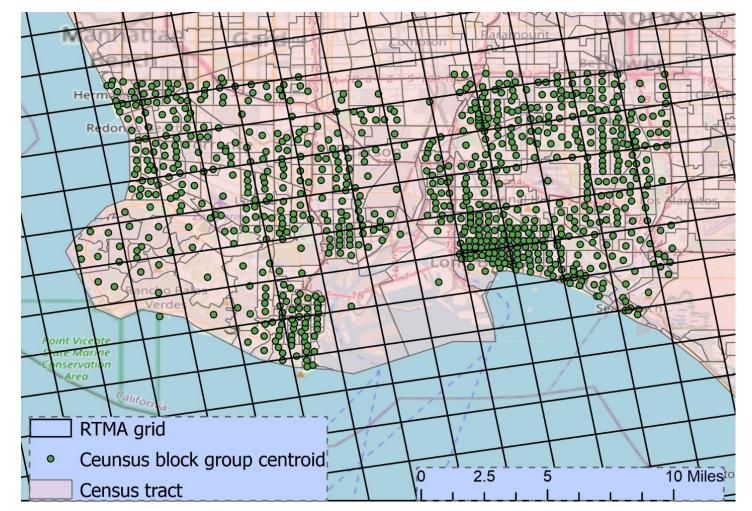
Scenario 3

Modeled brake wear PM₂₅ emissions

PM_{2.5} Running Exhaust Emission (Tons/Day) in 2040 by Scenario for South Coast Fleet

- EV penetration significantly reduces running exhaust emissions
- Comparison between scenario 1 and 3 shows that LDV EV penetration contributed an additional 3% reduction of overall running exhaust PM_{2.5} emissions

26


Summary of Results

Scenario	ICE reductions (%)	NO _x reductions (%)	PM _{2.5} reductions (%)
Scenario 1	9	27	8
Scenario 2	2	14	4
Scenario 3	2	26	4

- NO_x emissions
 - Scenario 3 showed similar NO_x emission reduction (26%) to Scenario 1 (27%) because MHDV fleet is the major NO_x contributor
- PM_{2.5} emissions
 - EV penetration does not greatly reduce PM_{2.5} emissions
 - Brake wear is the biggest contributor for $\rm PM_{2.5}$ emissions, and LDV is the biggest contributor for brake wear $\rm PM_{2.5}$
 - Since the EV penetration in the LDV fleet is not high (0.1% and 9%) in our scenarios, the overall $PM_{2.5}$ emissions reductions is limited

Next Steps

- Develop roadway-specific emissions using traffic activity data from Streetlytics (<u>https://www.bentley.com/en</u> /products/brands/streetlytics)
- Fine resolution modeling using real-time mesoscale analysis (RTMA) meteorological field

References

- Rowangould, G.M., 2013. A census of the U.S. near-roadway population: Public health and environmental justice considerations. Transp. Res. Part D Transp. Environ. 25, 59–67. doi:10.1016/j.trd.2013.08.003
- Erdakos G., Chang S.Y., Eisinger D., Heller A., and Unger H. (2019) Zero emission vehicles: forecasting fleet scenarios and their emissions implications. Final report prepared for NCHRP 25-25, Task 115 by Sonoma Technology, Inc., Petaluma, CA, and Louis Berger, Denver, CO, STI-918083-7043, November. Available at <u>http://www.trb.org/Main/Blurbs/180232.aspx</u>.
- Mukherjee A., McCarthy M.C., Brown S.G., Huang S., Landsberg K., and Eisinger D.S. (2020) Influence of roadway emissions on near-road PM_{2.5}: monitoring data analysis and implications. *Transportation Research Part D: Transport and Environment*, 86(102442), (STI-7166). Available at <u>https://www.sciencedirect.com/science/article/pii/S1361920920306295</u>.
- Snyder, M.G., Venkatram, A., Heist, D.K., Perry, S.G., Petersen, W.B., Isakov, V., 2013. RLINE: A line source dispersion model for near-surface releases. Atmos. Environ. 77, 748–756. doi:10.1016/j.atmosenv.2013.05.074
- Reid, S., Bai, S., Du, Y., Craig, K., Erdakos, G., Baringer, L., Eisinger, D., McCarthy, M., Landsberg, K., 2016. Emissions Modeling with MOVES and EMFAC to Assess the Potential for a Transportation Project to Create Particulate Matter Hot Spots. Transp. Res. Rec. J. Transp. Res. Board 2570, 12–20. doi:10.3141/2570-02

STi Sonoma Technology

Shih Ying Chang Air Quality Scientist, cchang@sonomatech.com

SonomaTech.com 707-665-9900

Supplementary slides

Comparison to previous studies

• A. EV population

C. Emissions change

Study	Heavy Duty EV	Study	NO _x emission reduction (tons/day)	
	population % in 2040		Light-duty fleet	Heavy-duty
Raju et al., 2021	21 26% (CARB scoping plan in the South Coast region)			fleet
		South Coast AQMP (2031)*	6	15
Current (this) study	30% (Scenario 1)	Current study (2040)	1	18

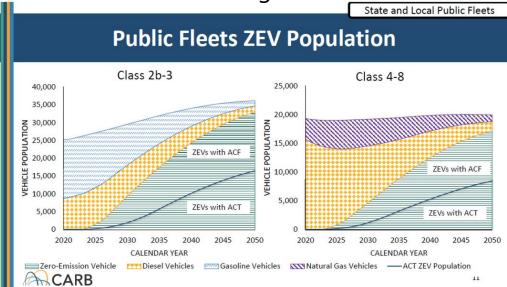
B. Emissions

*Estimates with range of local, state, and federal emission reduction measures, including emission reduction programs that are still in development

Study	On-road emissions (tons/year) in 2040		
	NOx	PM _{2.5}	
EPRI, 2020 (South Coast 1.33 km domain)*	19,000**	5,000**	
Current study	26,000 (Reference case) 19,000 (Scenario 1)	4,500 (Reference case) 4,100 (Scenario 1)	

* A scenario that meets California's economy-wide decarbonization targets of 40% by 2030 (relative to 1990 levels) and 80% in 2050 **Interpolated from the 2030 and 2050 estimates

ACT regulation


 Zero-emission truck sales: Manufacturers who certify Class 2b-8 chassis or complete vehicles with combustion engines would be required to sell zero-emission trucks as an increasing percentage of their annual California sales from 2024 to 2035. By 2035, zero-emission truck/chassis sales would need to be 55% of Class 2b – 3 truck sales, 75% of Class 4 – 8 straight truck sales, and 40% of truck tractor sales.

https://ww2.arb.ca.gov/resources/fact-sheets/advanced-clean-trucks-fact-sheet

ACF regulation

- Phase-in zero emission trucks and buses 2023 to 2045*
 - State and local government fleets
 - High priority private fleets and federal agencies
 - Drayage trucks serving ports and railyards

Source: http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2022-air-quality-management-plan/carb-epa-presentations---hd-trucks-03-24-21.pdf?sfvrsn=8