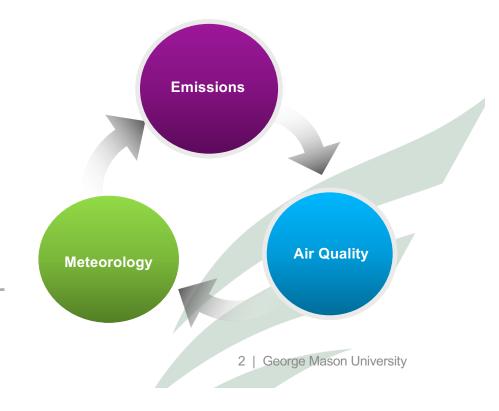
NOAA <u>National Air Quality Forecasting Capability (NAQFC)</u> <u>Community Emissions Testbed (NCET) Project</u>

Meteorology-induced Emissions Coupler, CMAQ-MetEmis, Development

B.H. Baek¹, Siqi Ma¹, Carlie Coats², Chi-Tsan Wang¹ and Daniel Tong¹


¹ Center for Spatial Information Science and System (CSISS), College of Science, George Mason University ² Institute for the Environment, University of North Carolina at Chapel Hill

Fully Coupled AQM System

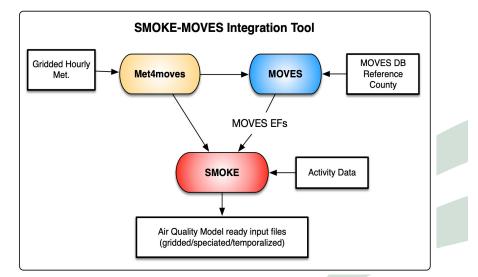
Coupling Meteorology-Induced Emissions with CTM

- 1. Biogenic
- 2. NH₃ Bi-directional
- 3. Lightning NOx
- 4. Sea salt
- 5. Windblown Dust
- 6. Plume Rise for Point
- 7. Onroad Mobile
- 8. Confined Livestock Wastes
- 9. Residential Heating

Motivation

Development of fully-coupled Weather-aware Emissions with CTM

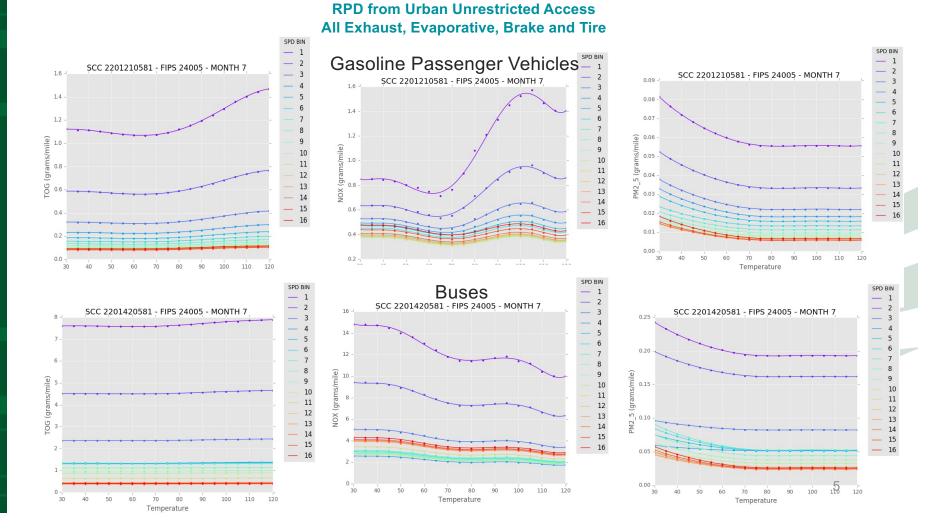
- Meteorology-induced Emissions Sources:
 - Mobile emissions from MOVES (Motor Vehicle Emission Simulator)
 - Agricultural livestock waste emissions
 - Residential heating-related emissions
- Technical Challenges:
 - Complex, Slow and Computationally Expensive
 - Required the detailed meteorological dependency information
- CMAQ-MetEmis: Developing the simple and quickest way to process these Meteorology-induced Emissions (MetEmis) inline with CMAQ for National Air Quality Forecasting Capability (NAQFC).
 - Updated the SMOKE modeling system to generate new pseudo-layered temperature-specific pregridded emissions development
 - Developed a new coupler module [CMAQ-MetEmis] for MetEmis sources within CMAQ v5.3.2.
 3 George Mason University


SMOKE-MOVES Integration Tool

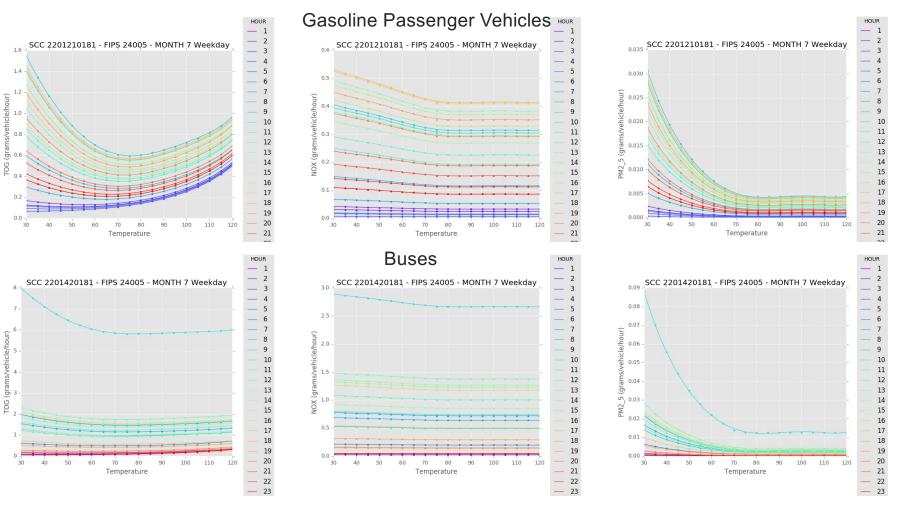
: Enabling users to develop offline weather-aware onroad mobile emissions

<u>SMOKE</u> (Sparse Matrix Operator Kerner Emissions) Modeling System

MOVES Emission Factors Lookup Tables


- Rate-Per-Distance [grams/miles]
 Exhaust and most evaporative emissions that happen on real roadtypes
 Sorted By SCC (=vehicle/road/process), 16 Speed Bins and Ambient Temperature Bins
- Rate-Per-Vehicle [grams/vehicle/hour] Exhaust and most evaporative emissions that occur offnetwork
 Sorted By SCC, Hour of day and Ambient Temperature Bins
- Rate-Per-Hour [grams/hour] APU operation and extended idling processes Sorted By SCC, Ambient Temperature Bins
- Rate-Per-Profile [grams/vehicle/hour]
 Vapor venting evaporative emissions that occur off-network Sorted By SCC, Hour of day and Min/Max Temperatures

More modes are expected to capture their own process at best:


- RatePerStart [RPS]: Engine start exhaust emissions
- **Off-Network Idling [ONI]**: Off-network extended idling exhaust emissions

MOVES Emissions Factors Lookup Tables

MOVES Emissions Factors Lookup Tables

RPV Off-network : All Exhaust, Evaporative, Brake and Tire

Current SMOKE-MOVES Integration Runs

- **315** Reference Counties for Continental U.S. Modeling Domains with Two Fuel Months per Each Reference County (Based on NEI 2017v1 Modeling Platform)
 - Over 330 MOVES Lookup Tables to process per day
- Computational Time

Sectors	Computing Time	RAM Memory Usages
RPD	90 mins/day	10-20 GB
RPV	40 mins/day	5-10 GB
RPH	5 mins/day	2 GB
RPP	20 mins/day	< 1 GB

SMOKE: Temp-Pregridded Emissions (MetEmis_TABLE)

Pseudo-layered Pre-gridded Hourly Emissions (EMIS_TABLE)

• SMOKE Movesmrg (MOVES EF Lookup Tables) Enhancement:

:Optionally can estimate a temperature-bin gridded hourly emissions (**METEMIS_TABLE**) and store them into into pseudo-layers using SMOKE. *Not Applicable for RPP yet.*

:Generate the identical results with MCIP gridded meteorology inputs using the same liner interpolation method between two temperature bins

- Advantages:
 - Monthly MOVES_TABLE files for SMOKE and CMAQ
 - Same weekly pattern of VMT
 - Same seasonal MOVES Emission Factors
 - Time-independent Gridding & Speciation
 - No need of MCIP meteorology files
- **Performance**: Significant improvement on SMOKE Processing: NEI 2017v1 Modeling Platform 12US1 [31 days]
 - <u>Current Movesmrg</u>: 31-days RPD outputs
 [~1.5 hours/day | total over 50 hours for 31 days]
 - New Mrggrid: 1.5 hours for 31 days
 - [4~5 mins/day]: Faster with OpenMP Mrggrid

8 | George Mason University

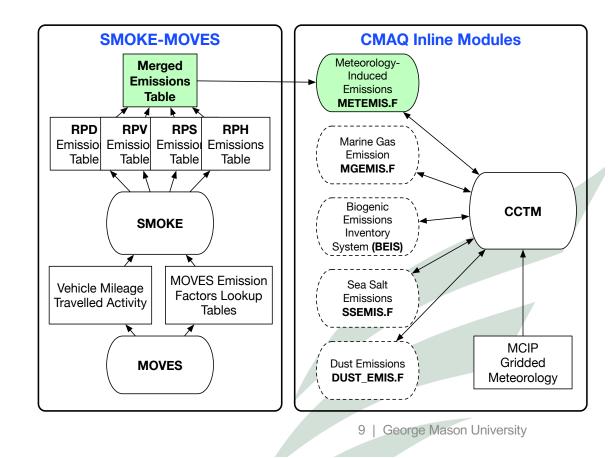
= 80

= 60

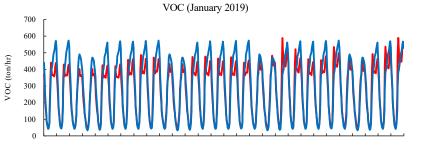
=

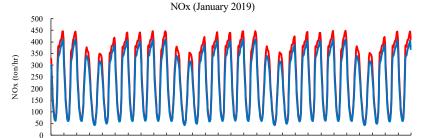
= 509

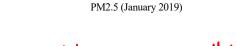
= 309


= 209

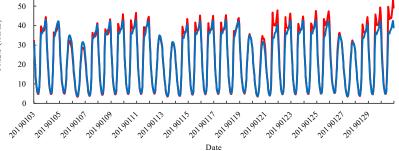
T = 10

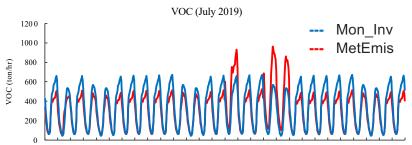

CMAQ-MetEmis Coupler Development

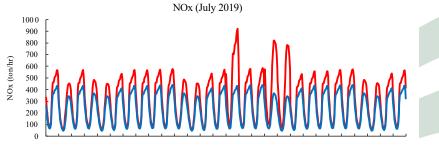

Direct Coupling between SMOKE and CMAQ


- No need to run multiple mobile sectors (RPD, RPV, RPH) but the merged METEMIST_TABLE is all needed
- Linear interpolation between tempbins emissions based on a gridded temperature at 2 meter from METCRO_2D.
- Meteorology-induced Emissions Coupler [MetEmis.F] module applications
 - Onroad mobile sources
 - Livestock waste NH₃ sources (future)

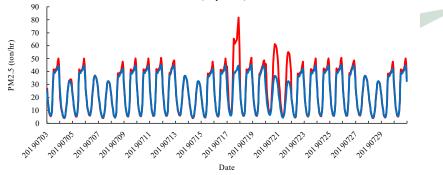
• Temporal Allocation Profiles used in SMOKE-MOVES define the majority of temporal hourly emissions



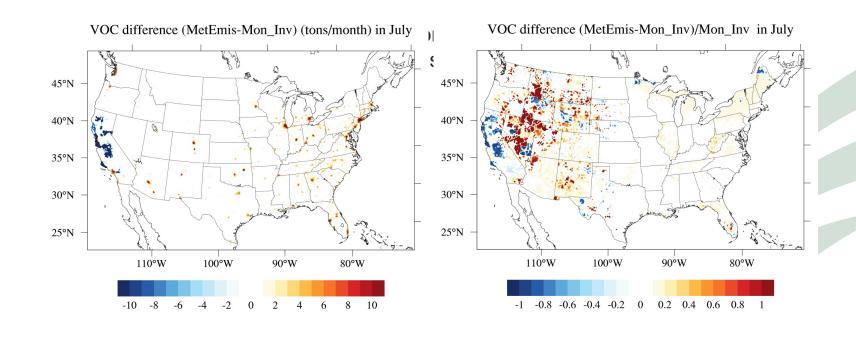




60


PM2.5 (ton/hr)

PM2.5 (July 2019)

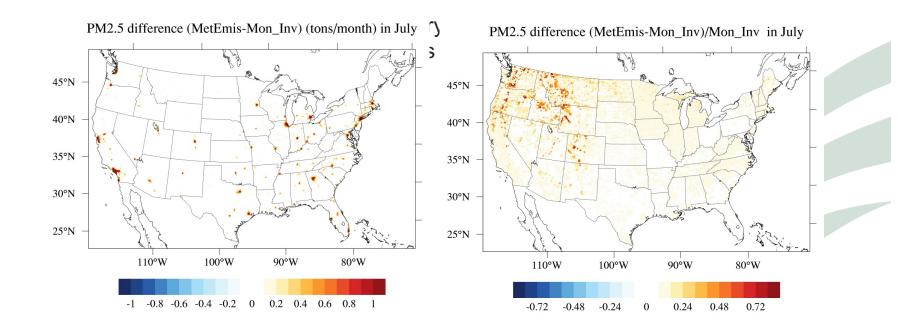


MOVES Monthly Inventory vs. SMOKE-MOVES MetEmis

(U.S. EPA NEI 2017 v1 Emission Modeling Platform)

AbsDiff : MetEmis-Mon_Inv

Ratio = (MetEmis-Mon_Inv)/Mon_Inv

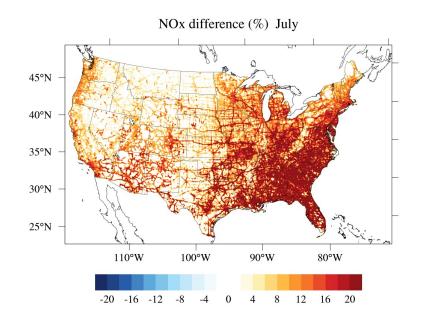


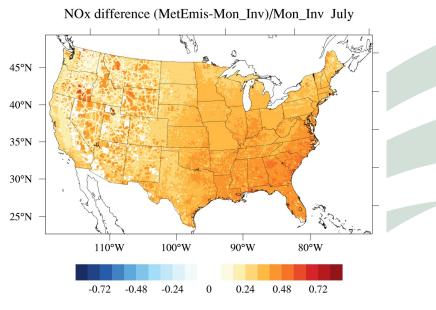
MOVES Monthly Inventory vs. SMOKE-MOVES MetEmis

(U.S. EPA NEI 2017 v1 Emission Modeling Platform)

AbsDiff : MetEmis-Mon_Inv

Ratio = (MetEmis-Mon_Inv)/Mon_Inv

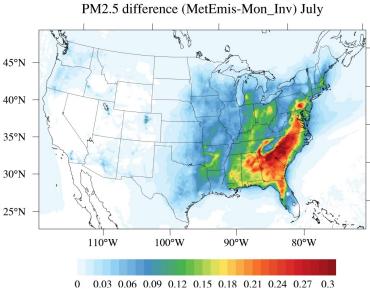



MOVES Monthly Inventory vs. SMOKE-MOVES MetEmis

(U.S. EPA NEI 2017 v1 Emission Modeling Platform)

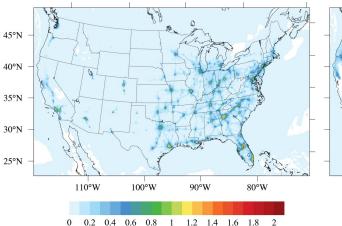
AbsDiff : MetEmis-Mon_Inv

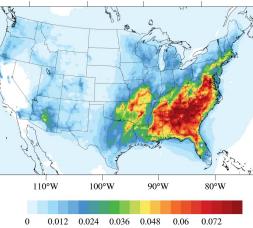
Ratio = (MetEmis-Mon_Inv)/Mon_Inv



٠

CMAQ O₃ & PM_{2.5}


NOx increase (due to humidity correction) and VOC increase over Southeastern U.S. impacts the most to O_3 and $PM_{2.5}$


O3 difference (MetEmis-Mon_Inv) July

0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3

Benzene difference (MetEmis-Mon_Inv) July

NO2 difference (MetEmis-Mon_Inv) July

Formaldehyde difference (MetEmis-Mon_Inv) July

110°W 100°W 90°W 80°W

0 0.003 0.006 0.009 0.012 0.015 0.018

CMAQ O₃ & PM_{2.5} Hourly Conc. Difference

Metropolitan (Boston, NYC, Philadelphia, D.C., Atlanta, Dallas, Houston, LA)

O ₃ (ppb)	Month	Boston	NYC	PHL	D.C.	Atlanta	Dallas	Houston	LA
Min	January	-0.59	-0.27	-0.52	-0.39	-0.73	-0.40	-0.42	-0.73
Max	January	0.78	0.81	0.78	0.77	0.36	0.31	0.26	0.12
Average	January	-0.05	0.03	0.00	-0.01	-0.05	-0.01	-0.05	-0.15
Min	July	-1.01	-1.02	-0.55	-0.57	-0.79	-1.19	-0.54	-0.83
Max	July	2.77	2.65	2.98	3.32	4.31	2.13	1.98	0.40
Average	July	0.47	0.74	0.95	1.02	1.25	0.48	0.33	-0.10

PM _{2.5} (ug/m³)	Month	Boston	NYC	PHL	D.C.	Atlanta	Dallas	Houston	LA
Min	January	-0.11	-0.06	-0.05	-0.12	-0.15	-0.02	-0.04	-0.32
Max	January	0.57	0.44	0.52	0.67	0.70	0.32	0.21	0.86
Average	January	0.08	0.08	0.08	0.09	0.09	0.05	0.03	0.01
Min	July	-0.12	-0.12	-0.05	-0.07	-0.11	-0.05	-0.10	-0.23
Max	July	0.70	0.53	0.52	0.45	0.78	0.23	0.44	0.30
Average	July	0.10	0.05	0.09	0.12	0.19	0.04	0.04	-0.03

Preliminary Results

- Successfully coupled the complex onroad mobile emissions that are sensitive to local meteorology with CMAQ for NAQFC applications.
- Applicable for other meteorology-sensitive emission sources like confined livestock wastes and residential heating
- Most temporal allocations of onroad mobile emissions are driven by the VMT temporal allocations and minor impacts by local meteorology.
- No significant local meteorology-induced onroad mobile emissions impacts on local O_3 and $PM_{2.5}$ concentrations.
 - Summer: > 4 ppb O3 and <1 ug/m³ PM_{2.5} changes
 - Winter: < 1ppb O3 and <1 ug/m³ PM_{2.5} changes
- **Hypothesis**: Finer grid cell over urban area where mobile emissions contributions are the biggest could show the most sensitive to the local meteorology-induced emissions.
- <u>Next step</u>: NAQFC meteorology-induced emissions impact studies based on a combination of onroad mobile, confined livestock wastes (NH₃ and VOC) and residential heating (CO, VOC and PM_{2.5}).

Acknowledgement

NOAA

Office of Oceanic and Atmospheric Research (OAR) Office of Weather and Air Quality (OWAQ) Air Resource Laboratory (ARL)

NOAA

U.S. EPA

Office of Air Quality Planning and Standards (OAQPS) &

Office of Research Development (ORD)

