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• Short lifetime of NO2 along with rich dataset of NO2 observed 

from space provides opportunities to estimate NOx emissions 

using NO2 satellite data alongside chemical transport models

• Approaches

• Finite-difference mass-balance method in Lamsal et al. 2011: 

Quickly update NOx emissions with satellite NO2

• Recent approaches use 4DVAR/adjoint, but this is less accessible

• Secondary products of NOx emitted elsewhere can 

impact US air quality

• Accurate global emissions inventories are critical for 

representing this impact, but are challenging to 

develop and update

• Satellites, providing data in real time, offer an 

opportunity to bridge this data gap
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Why estimate emissions by assimilating satellite data?

Figure: Itahashi et al. 2020, ACP. (Figure 6), Modeling stratospheric intrusion and trans-

Pacific transport on tropospheric ozone using hemispheric CMAQ during April 2010 – Part 

2: Examination of emission impacts based on the higher-order decoupled direct method

O3

Video: Nitrogen Dioxide from Aura/OMI 2013-2014, 

NASA/Goddard Space Flight Center



Data assimilation in CMAQ

• Satellite assimilation in CMAQ provides capability to:

• Constrain international emissions

• Improve boundary conditions for US air quality simulations

• Fast first-pass estimates of NOx emissions in response to unexpected changes 

(e.g. COVID-19)

• Estimate NOx emissions from some sources with uncertainty, such as soil NOx

• This presentation will share results of applying the data assimilation 

system to:

• Infer northern hemisphere NOx emissions for 2019

• Explore impact on long range O3

• This project originated as a HAQAST Tiger Team led by Brad Pierce and 

Daniel Tong
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• TROPOMI satellite instrument

• Was launched in 2018 aboard the 

Sentinel-5P satellite

• 1:30pm equatorial overpass time

• Daily global coverage

• 3.5km x 5.5km data resolution

• OMI satellite instrument

• Launched 2004 aboard Aura satellite

• 1:45pm equitorial overpass time

• Global coverage in 2 days

• 13km x 24km data resolution

• Row anomaly since 2007 causes 

missing data

NO2 Satellite data
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Inversion system
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Study design

Simulations

Base Case with prior emissions*

Assimilation with prior emissions

Posterior emissions run

*LNOx emissions are adjusted 

before running Base Case

Seasons

January 2019

July 2019

Satellites

OMI NO2

TropOMI NO2
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Simulation inputs

Emissions (North America & 

rest of hemisphere)

2017 EPA platform

Emissions (China) 2015 Tsinghua University

Meteorology 2019 WRF

Satellite Observation year 2019



Satellites push CMAQ emissions different directions
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TropOMI inferred OMI inferred

+21% OMI

-24% TropOMI

China

+29% OMI

-34% TropOMI

USA

Note: Preliminary data from East et al. in prep, please do not distribute
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Analysis increment reflects same trend

Except for the 
satellite data 
assimilated, these 
two simulations 
are identical

Iterations

Note: Preliminary data from East et al. in prep, please do not distribute
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Slant column observations
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OMI filtering:
• 1x1 degree binned
• <30% cloud cover
• Solar zenith angle < 85
• VCD Quality flag = 0

TropOMI filtering:
• 1x1 degree binned
• <30% cloud cover
• Solar zenith angle < 85
• QA Flag >= 0.75

January

analysis increment

Note: Preliminary data from East et al. in prep, please do not distribute

18



Impact on U.S. AQS O3 performance depends 
on season
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Note: Preliminary data from East et al. in prep, please do not distribute
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Satellite differences have implications for long 
range transport

Note: Preliminary data from East et al. in prep, please do not distribute
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Conclusions

• Satellite data assimilation in CMAQ enables the capability to adjust 
NO2 and to update NOx emissions based on observations.

• OMI and TropOMI observations push emissions estimates in 
different directions.

• NOx emissions differences can reach +/- 30% (U.S.) and +/- 20% (China).

• OMI inferred emissions perform slightly better than TropOMI in the 
US, except for summertime O3

• There is an impact on transpacific O3 of up to 3 ppb difference 
(winter) in the free troposphere, depending on which satellite is used.

• We continue to investigate the differences between OMI and 
TropOMI in this data assimilation context.
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Thank you!
east.james@epa.gov

Disclaimer: The views expressed in this presentation are those of the authors and do not

necessarily represent the views or policies of the U.S. Environmental Protection Agency.
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