
IMPLEMENTATION AND TESTING OF THE COMMUNITY
MULTISCALE AIR QUALITY (CMAQ) MODEL ON THE CLOUD
ELIZABETH ADAMS, CARLIE COATS, CHRISTOS EFSTATHIOU AND SARAVANAN ARUNACHALAM, UNC INSTITUTE FOR THE ENVIRONMENT

MARK REED AND ROBERT ZELT, UNC INFORMATION TECHNOLOGY SERVICES

CMAQ ON THE “CLOUD”

Goal: Implement and test the Community Multiscale Air Quality (CMAQ) model for on-demand access to a
large remote pool of computing and data resources offered through commercial “cloud” vendors
• Address computing, software, and data issues collectively and make recommendations
• Develop summary of best practices for the CMAS User Community

Computing: Commercial cloud computing platforms vs local computing infrastructure
• Amazon Web Services (AWS)
• Microsoft Azure

Software: Use of Virtual Machines, container or csh scripted native build approach to replicate existing
system and software environment, so researchers avoid configuring from scratch (time & difficulty)

Data problem: Large volumes of data can be quickly shared and processed in the cloud, saving time from
downloading locally and keeping redundant copies

2

DEFINING THE STEPS

Approach:

¡ Establish a set of benchmark cases representative of the CMAQ community needs
¡ Review and enhance existing methods to connect to share input data, store and distribute output
¡ Keep in mind other factors such as visualization tools, debugging, etc.

This work aims to:

¡ Develop methods to build, install, and run CMAQ as a Singularity container, Docker container or scripted
native build

¡ Test performance and scalability on single node cloud computing environments
¡ Test multi-node high performance computing on the cloud using Amazon ParallelCluster and Microsoft Cyclecloud

¡ Ways to provision and manage HPC workloads using any scheduler to run MPI jobs
¡ Develop recommendations on provisioning resources, accurately forecasting CMAQ model run time with optimal

configuration, storage requirements, and ultimately create reliable cost estimates for performing CMAQ
simulations on the cloud

3

THE CMAQ BENCHMARK SUITE
Hardware configurations depend on the domain size, grid resolution, the number of variables and layers saved to the output

Typical requirements for two different 2-Day Benchmark Cases, both using a 12x12-km horizontal grid resolution

¡ Domain 1: Distributed 12SE1 Benchmark Case (NCOLS= 100, NROWS=80, NLAYS=35)

¡ Domain 2: CONUS (NCOLS= 396, NROWS=246, NLAYS=35)

Storage Requirements
Input:
23GB
Output:
15GB (full)
1.2GB (12 vars, 1 layer)

Storage Requirements
Input:
44GB
Output:
172GB (full)
17.7 GB (12vars, 1 layer)

4

THE CMAQ PLATFORM CONFIGURATION EVOLUTION

Native System Build

¡ OS:CentOS

¡ GCC 8.3.1

¡ OpenMPI 3.1.4

¡ NETCDF 4.7.1

¡ NETCDF-Fortran 4.5.2

¡ IOAPI 3.2

¡ CMAQ v5.3.2

Container System Build

¡ OS:CentOS

¡ Bootstrap: docker

¡ GCC 9.2

¡ OpenMPI 3.1.4

¡ hdf5-1.10.5

¡ pnetcdf-1.11.2

¡ NETCDF 4.7.1

¡ NETCDF-Fortran 4.5.2

¡ IOAPI 3.2

¡ CMAQ v5.3.2

pCluster System Build

¡ OS:CentOS

¡ GCC 8.3.1

¡ OpenMPI 3.1.4

¡ NETCDF 4.7.1

¡ NETCDF-Fortran 4.5.2

¡ IOAPI 3.2

¡ CMAQ v5.3.2

Cycle Cloud System Build

¡ OS:CentOS

¡ Bootstrap: docker

¡ GCC 9.2

¡ OpenMPI 4.0.5

¡ NETCDF 4.7.1

¡ NETCDF-Fortran 4.5.2

¡ IOAPI 3.2

¡ CMAQ v5.3.2

• Base-compiler and libraries used (We assumed the standard CentOS7)

• MPI version and its major version number (and underlying base-compiler) for the build

• "vanilla" CMAQ, or Decoupled Direct Method (CMAQ-DDM), or the Integrated Source Apportionment Method (CMAQ-ISAM)

• Compiler options: We assumed medium memory model (see https://cjcoats.github.io/ioapi/AVAIL.html#medium) and both debug and
optimized, with default hardware-model (which means SSE4.2).

5

https://cjcoats.github.io/ioapi/AVAIL.html

HARDWARE AND STORAGE OPTIONS ON AWS

¡ Simulation benchmarks : CMAQ

¡ C5n Compute Instances with 100 Gbps Networking

¡ Parallel Cluster can be configured to use any of the instances as compute nodes and to
reduce pricing, can be reserved as spot instances (reducing cost).

¡ C5n.18xlarge instances support Elastic Fabric Adapter (EFA) to run tightly-
coupled HPC applications at scale on AWS.

6

https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/hpc/

HARDWARE OPTIONS ON AZURE - VIRTUAL MACHINES

Type Sizes Description
General purpose B, Dsv3, Dv3, Dasv4, Dav4,

DSv2, Dv2, Av2, DC, DCv2, Dv4,
Dsv4, Ddv4, Ddsv4

Balanced CPU-to-memory ratio. Ideal for testing and development, small to
medium databases, and low to medium traffic web servers.

Compute optimized F, Fs, Fsv2, FX High CPU-to-memory ratio. Good for medium traffic web servers, network
appliances, batch processes, and application servers.

Memory optimized Esv3, Ev3, Easv4, Eav4, Ev4,
Esv4, Edv4, Edsv4, Mv2, M,
DSv2, Dv2

High memory-to-CPU ratio. Great for relational database servers, medium to
large caches, and in-memory analytics.

Storage optimized Lsv2 High disk throughput and IO ideal for Big Data, SQL, NoSQL databases, data
warehousing and large transactional databases.

GPU NC, NCv2, NCv3, NCasT4_v3,
ND, NDv2, NV, NVv3, NVv4

Specialized virtual machines targeted for heavy graphic rendering and video
editing, as well as model training and inferencing (ND) with deep learning.
Available with single or multiple GPUs.

High performance
compute

HB, HBv2, HBv3, HC, H The fastest and most powerful CPU virtual machines with optional high-
throughput network interfaces (RDMA). 7

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc

HARDWARE OPTIONS ON AZURE – STORAGE AND NETWORK
¡ Provisioning takes place at different levels, user must be aware of the cost of options

vs benefit

¡ HBv3-series VMs are optimized for HPC applications. HBv3 VMs feature up to 120
AMD EPYC™ 7003-series (Milan) CPU cores, 448 GB of RAM, and no hyperthreading.
HBv3-series VMs also provide 350 GB/sec of memory bandwidth, up to 32 MB of L3
cache per core, up to 7 GB/s of block device SSD performance, and clock frequencies
up to 3.675 GHz.

¡ All HBv3-series VMs feature 200 Gb/sec HDR InfiniBand from NVIDIA Networking to
enable supercomputer-scale MPI workloads. These VMs are connected in a non-
blocking fat tree for optimized and consistent RDMA performance. The HDR InfiniBand
fabric also supports Adaptive Routing and the Dynamic Connected Transport (DCT, in
additional to standard RC and UD transports). These features enhance application
performance, scalability, and consistency, and their usage is strongly recommended.

¡ Benchmark tests on the Azure environment were performed using two different
managed disk options, the standard SSD tier E20 and the premium SSD tier P40

¡ A number of factors determine the final storage cost to the user and therefore it is
advised to use the pricing calculator to better estimate individual scenarios
(https://azure.microsoft.com/en-us/pricing/calculator/)

¡ Indicatively, the cost for 512 GB E20 standard SSD starts about $38.60 per month
while the P40 premium equivalent is nearly double that of the standard SSD cost 8

Size vCPU Processor Memo
ry
(GiB)

Memory
BW
(GB/s)

Base
CPU
Freq.
(GHz)

RDMA
Perf
(Gb/s)

Standard_HB120rs_v3 120 AMD EPYC
7V13

448 350 2.45 200

Standard_HB120-96rs_v3 96 AMD EPYC
7V13

448 350 2.45 200

Standard_HB120-64rs_v3 64 AMD EPYC
7V13

448 350 2.45 200

Standard_HB120-32rs_v3 32 AMD EPYC
7V13

448 350 2.45 200

Standard_HB120-16rs_v3 16 AMD EPYC
7V13

448 350 2.45 200

https://azure.microsoft.com/en-us/pricing/calculator/

CONTAINERIZING CMAQ AND SCRIPTED NATIVE BUILD OF LIBRARIES AND CODE
Benefits:

Layered approach allows the user to rebuild the final layer without touching the underlying ones

Also allows for any required updates or changes to be tracked using GitHub

¡ Definition file #1 contains instructions for downloading and installing GNU Compiler Collection (GCC 9.2), HDF5 (hdf5-
1.10.5), netCDF-C (netcdf-c-4.7.1), netCDF-Fortran (netcdf-fortran-4.5.2), netCDF-CXX (netcdf-cxx4-
4.3.1), OpenMPI (openmpi-3.1.4), and Parallel netCDF (pnetcdf-1.11.2), and takes build time of approximately 25 minutes

¡ Definition file #2 contains instructions for building a tagged release of I/O API, with build time of 2 minutes

¡ Definition file #3 contains instructions for building CMAQv5.3.2

¡ The initial method for building the SingularityCE container layers was provided by the EPA for an earlier version of CMAQ.

¡ The three scripts used to create the definition files were modified to run as C-shell scripts to create "Native Builds" of the
software

¡ All definition files and scripts use wget and configure to obtain and build libraries, git pull is used to obtain CMAQ, with
bldit.cctm and a modified run script to build and run CMAQ

¡ Once the software is loaded to an instance, it can be saved and reused as an Amazon Machine Instance (AMI) or
Azure Custom Image 9

RESULTS FROM NATIVE AND CONTAINERIZED SIMULATIONS (AWS + AZURE) 12SE1

10

1. Running on a single node on the AWS the performance is
limited by the number of CPUs available per node, and
whether you are using virtual cpus (hyperthreading turned
on) or not.

2. Successfully ran using containers on an AWS single node,
but not on the Parallel Cluster

3. Successfully used Parallel Cluster to compile and run a
native build, which allows you to use more CPUs, but the
smaller domain of the benchmark limits the ability to fully
utilize additional CPUs.

RESULTS FROM CONTAINERIZED SIMULATIONS ON AZURE

12SE1 CONUS

11

1. Similarly to AWS, when running single node on Azure the performance is limited by the number of CPUs available and the
processor generation and speed

2. Successfully ran using containers on Azure single nodes, memory limits the use of VMs with less than 16cores for CONUS
3. Testing different tiers revealed best performance obtained using the latest generation of HPC tier VMs

INSIGHTS FROM CONTAINERIZED SIMULATIONS ON AZURE – COSTS*

12

1. Latest generations of HPC tier VMs are
the fastest and most cost-effective
solution in Azure

2. Storage option did not have a significant
impact on the speed to justify the cost
(this needs to be evaluated by user for
larger simulations)

3. Leaving 1-2 cores free helped slightly
speed up the simulations

4. Availability and pricing can make older
generations and general compute tier
appealing for smaller scale simulations

*Note that the costs refer only to VM use, are
indicative, and for comparison purposes

MULTI-NODE SIMULATION RESULTS: AWS PARALLELCLUSTER NATIVE BUILD
12KM CONUS CASE

13

1. Using the Parallel Cluster allows you to quickly iterate testing using different EC2 instances, choosing enhanced
networking support, including enabling elastic fabric adapter (efa) with hyper-threading turned on or off and
modifying the underlying filesystem, quickly copying input data from the S3 Bucket, and choosing spot or reserved
instances using a configuration file.

2. The best performance for the 12km CONUS domain was obtained using the c5n.18xlarge instance with efa,
with hyperthreading turned off, using the lustre file system, and using spot instance pricing.

MULTI-NODE SIMULATION RESULTS: AZURE CYCLECLOUD

14

1. The best performance for the 12km CONUS domain on Azure was obtained using
the most recent HPC tier VMs

2. Using fewer Procs/Node can result to substantially faster simulations
3. The container version of CMAQ performed similarly to the native Cyclecloud setup

Single-node simulations

¡ Container-based approach performs and scales well in both systems

¡ More modern nodes have speed advantages and better performance/price

¡ Relatively easy to provision and similar learning curves between the system

¡ In general, best suited for smaller scale simulations, although the HPC tier performed very well for CONUS

Multi-node simulations

¡ Not as easy to setup as the single-node environment – learning curve steeper in both systems with Azure
need more provisioning work

¡ Networking and MPI added level of difficulty for containerized approach

¡ Both approaches scale well, breaking down the simulations in smaller chunks can help speed up (done
easier in SLURM than single node setup)

15

LESSONS LEARNED

CONCLUSIONS
¡ Benefits to working on the cloud

¡ Quickly set-up and run - no waiting in job queue

¡ Compute resource and storage is reliable, resizable, and quickly configurable

¡ Flexible pricing – on-demand versus spot-pricing

¡ AWS Parallel Cluster and Azure CycleCloud provides access to hundreds or thousands of compute cores, a
job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both),
updated compilers and libraries, and a fast network.

¡ AWS Parallel Cluster “infrastructure as code” - single shell command can create a complex HPC cluster,
and a Lustre file system, and a visualization studio, Azure Cycle Cloud provides some of this functionality
but requires additional steps and assistance from UNC IT Support to provision.

¡ AWS Share input and output data on s3 buckets with very fast download speeds using S3 API

¡ AWS Parallel Cluster and Azure CycleCloud were difficult to configure run MPI across nodes within a
container, but both supported building the libraries and compiling CMAQv5.3.2 natively and running using
OpenMPI and the SLURM Job Scheduler.

¡ Cost comparisons between similarly configured AWS Parallel Cluster and Azure Cycle Cloud couldn't be
made directly, due to differences in how the clusters were provisioned and tested. 16

https://aws.amazon.com/about-aws/whats-new/2019/03/aws-parallelcluster-support-for-amazon-fsx-lustre/
https://aws.amazon.com/blogs/opensource/deploy-hpc-cluster-remote-visualization-single-step-parallelcluster/

FUTURE WORK
¡ Phase 1: Create Minimum Viable Product (MVP) for CMAS Community to be released by Spring 2022

¡ Ability to build (native build and not in container) and install CCTM (from CMAQ v5.3.3) on the cloud for the ConUS case (2016
12km case) on 2 environments - AWS (pCluster) and Azure (Cycle Cloud) for 2 days

¡ Post-processing (combine, etc.) to reduce the data volume for potential future egress out of AWS/Azure

¡ Ability to access input datasets from EPA’s S3-bucket using 2016 platform

¡ Include robust testing (using varying # of cores and hardware configs as may be available)

¡ Documentation of entire procedure (both install and data retrieval), with tutorial for the user community to emulate for their own
applications

¡ Phase 2: Expanded capabilities [Timeline: TBD]
¡ Move CMAQ to package management software (Yum or other)

¡ Change scripts from C-shell to Bash

¡ Enable running containers on both AWS pCluster and Cycle Cloud

¡ Access data from CMAS Data Warehouse [e.g., EQUATES datasets or other] [See Foley et al Presentation in Model Applications Session on
Tuesday]

¡ Add additional post-processing tools (e.g., AMET, VERDI or other python tools) [See Session on Python for CMAQ by Kim and Henderson at
this Conference on Fri]

17

REFERENCES
¡ Singularity Container Build Method and Documentation by Dr. Carlie Coats

¡ https://cjcoats.github.io/CMAQ-singularity/

¡ Singularity Container Build Method by Ed Anderson

¡ Amazon AWS Parallel Cluster

¡ https://aws.amazon.com/hpc/parallelcluster/

¡ https://aws.amazon.com/blogs/storage/building-an-hpc-cluster-with-aws-parallelcluster-and-amazon-fsx-for-lustre/

¡ Azure Cycle Cloud

¡ https://azure.microsoft.com/en-us/features/azure-cyclecloud/#overview

¡ https://docs.microsoft.com/en-us/azure/cyclecloud/how-to/hb-hc-best-practices?view=cyclecloud-8#centos-76-hpc-marketplace-image

18

https://cjcoats.github.io/CMAQ-singularity/
https://aws.amazon.com/hpc/parallelcluster/
https://aws.amazon.com/blogs/storage/building-an-hpc-cluster-with-aws-parallelcluster-and-amazon-fsx-for-lustre/
https://azure.microsoft.com/en-us/features/azure-cyclecloud/
https://docs.microsoft.com/en-us/azure/cyclecloud/how-to/hb-hc-best-practices?view=cyclecloud-8

ACKNOWLEDGMENTS

¡ The U.S. EPA, through its Office of Research and Development, partially funded and collaborated in the research
described here under Contract EP-W-16-014 to the Institute for the Environment at the University of North Carolina
at Chapel Hill.

¡ John McGee, UNC-ITS and Microsoft Azure for Cloud Credits

¡ We thank the following staff at the EPA for several inspiring and helpful discussions and contributions to this work

¡ Kristen Foley

¡ Fahim Sidi

¡ Steve Fine

¡ Ed Anderson

¡ Tom Pierce

19

