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11. INTRODUCTION  

  
Continuous advances in disk storage and CPU 

speeds have allowed for ever increasing file 
sizes in numerical modeling of geoscientific 
fields. However, the growth in both number and 
size of input files outpaces the computer power, 
often putting stress on the underlying files sytems. 
For example, CMAQ’s DESID (Murphy et al 
2021) allows CMAQ to use  many individual 
emissions sectors as input, which may quickly 
fill up the available disk space.  

To  manage the storage and computational 
demands, files are often compressed 
to smaller sizes when they are not used for 
modeling. File compression and 
decompression is typically 
accomplished  offline with common standalone 
tools such as GZIP (Gaille & Adler 
2000) or parallel BZIP (Gilchrist 
& Nicholov 2021). Offline compression and 
decompression processes 
are not conducted simultaneously 
with modeling/simulations, such as emissions 
ingestion into an air quality model. As a result, the 
processes before and after modeling not only take 
up additional times, but also occupy much of the 
RAM and/or cache memories that often slow down 
computational and access speeds of other 
users’ .  

Climate studies conducted within California Air 
Resources Board (Zhao et al 2020) 
revealed that the size of netcdf-3 
classic WRF output files  could be reduced by  ~50
% via the offline “nccopy” command 
(Unidatab 2021). Further experiment with this 
offline command on SMOKE emissions in classic 
format showed drastic size reduction by up to 
99%. But in terms of disk space management and 
processing time, this offline approach is less 
efficient. To let Models-3 programs, such as 
SMOKE and CMAQ, access to netCDF files in a 
compressed format, it is desirable to enable the 
common program interface IOAPI (Community 
2021) to read, write and 
compress the netCDF files on the fly.  

  

In Section 2, we illustrate steps to 
compile netCDF with compression. We 
also indicate the key Fortran subroutines that need 
to be edited to accommodate this 
novel compression approach within IOAPI 
framework  

File size and runtime statistics resulting from 
SMOKE and CMAQ runs are reported in Section 
3. Insights gained from the 
observation are discussed in Section 4. Additional 
output options and environment settings required 
for end-users are described in the same section.   

  
  
2. LIBRARY IMPLEMENTATION  

  
Conventional IOAPI is compiled 

with netcdf classic without any other additional 
libraries. To enable IOAPI's compression 
capability, zlib and hdf5 need to be incorporated in 
the netCDF.  Here are the steps needed to 
achieve our library implementation:  

  
Step 1 Install zlib;  
Step 2 Install hdf5;  
Step 3 Install netcdf with zlib and hdf5 libraries 

from Steps 1 and 2;  
Step 4 Install netcdf fortran based on 

the netcdf in Step 3;  
Step 5 Compile edited IOAPI with all the 

libraries from Steps 1 through 4;  
Step 6 Compile m3tools based on the IOAPI 

in Step 5.  
  
In IOAPI, the key change lies in the subroutine 

“crtfil3.F90” that is called mostly by 
“open3.F90” subroutine. The original version only 
has “NF_DEF_VAR” statements each of which 
creates 
a netCDF variable. Compression was enabled 
by adding a “NF_DEF_VAR_DEFLATE” statement 
after each “NF_DEF_VAR” call. Also used by 
Zender (2016), the DEFLATE call is based on 
Deutsch’s algorithm (1996), which chops the 
whole dataset into blocks that are 
individually compressed.  
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The new IOAPI (NC7 IOAPI hereafter) reads 
any netcdf format, but writes NC7 by default. 
Alternative output format is allowed with user 
specification as described in Section 4.  
  
  
3. TEST CASE AND VISUALIZATION  

  
Two cases with identical area FF10 inventory 

and supporting files were processed by 
compiling  SMOKEwith different compression 
options ...The first case (NC3) uses SMOKE 
with netcdf3-classic/IOAPI libraries in which no 
compression capability was installed  The second 
case (NC7) uses SMOKE with netcdf4-
classic/IOAPI libraries with compression.  To take 
storage management into account, run times to zip 
up NC3 files were also calculated. Two offline 
compression tools, GZIP and parallel BZIP 
(PBZIP2), were used. The resulting run times and 
output file sizes during SMOKE processing for an 
annual simulation (I.e. 365 days) of gridded hourly 
emissions for the two cases is shown in Table 
1.  First, we show that the per-day file size of 
NC7 was reduced to 8.7% of its NC3 
counterpart, producing a 91% file size reduction. 
Second, we found that with respect to SMOKE run 
time alone, the NC7 version takes 36% longer to 
run than its NC3 counterpart.    
   

SMOKE area run for 365 days 

  
NC3  NC7  

NC7-
to-NC3 

ratio 
Remarks 

SMOKE 

Per day 
file 
size (MB) 

633.0 55.0 8.7% NC3 
uncompressed 

Run time 
(min) 

30.6 41.6 135.9% Time taken by 
SMOKE 

GZIP 

Per day 
file 
size (MB) 

55.0 N\A 100.0% NC3 
compressed 

Runtime 
(min) 

29.6 N\A 69.2% 
Time taken 
by  SMOKE 

+ gzip 

PBZIP2 
Per day 
file 
size  (MB) 

52.0 N\A 105.8% NC3 
compressed 

Runtime 
(min) 

85.6 N\A 35.8% 
Time taken 

by   SMOKE 
+ pbzip2 

 
Table 1. SMOKE area run for 365 days. NC3 means 
SMOKE compiled with netcdf3-classic libraries, while 
NC7 means that with netcdf4-classic compressible 
libraries.  

 
However, when offline compression time on 

NC3 files is combined with the SMOKE run time, 
the NC7 SMOKE still runs faster given that it 
compresses output files while writing them out. 
Compared to GZIP, NC7 SMOKE has only 69% of 
its combined run time; for PBZIP2, NC7 
SMOKE has 36%.  

Similar statistics were also observed (not 
shown) when a SMOKE utility called Mrggrid was 
also used to merge multiple emission sectors for a 
month.  The resulting NC7 files had much smaller 
file size than NC3.  Additionally, the NC7 SMOKE 
took less time to finish its run time compared to 
NC3 SMOKE plus offline compression combined.  

Lastly, VERDI was used to verify that the 
output files from the NC3 and 
NC7 run cases resulted in identical 
datasets. Visualization tools such as NCVIEW, 
MATPLOTLIB, and VERDI, work for NC7 gridded 
files. In particular, VERDI not only can load NC7 
and NC3 files onto the same console, but also can 
perform arithmetic operations on the pair to derive 
a third tile plot, assuming the pair have common 
header attributes.                                                   .                                                                                                                                                                                                                                                                    

 
 
4. DISCUSSIONS 

 
While NC7 SMOKE, its utilities as well as NC7 

IOAPI m3tools reduce file size tremendously, 
CMAQ benefits much less from it. In-house 
simulations indicate that CMAQ 
runs need longer runtimes (~ 15 –20% ) with NC7 
IOAPI compared to its NC3 counterpart.  Also, 
compressing CMAQ output files such as CGRID, 
ACONC among others, results in only few percent 
reduction in file size. The contrasting behaviors 
exhibited by SMOKE files and CMAQ output 
files could be attributed to  to their respective data 
structure. In SMOKE, data are typically filled into 
initialized arrays which result in discrete and 
sparse data structure. On the other hand, CMAQ 
output fields are written out after undergoing 
numerous multistage in-model calculations that 
span across grid cells and layers over the entire 
simulation period. As a result, all elements are 
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filled in the arrays thus rendering the data 
structure as continuous. According to Deutsch’s 
algorithm, arrays are typically chopped into 
smaller blocks. The latter are then compressed 
individually. Arrays with sparse data structure are 
much easier to chop up and compressed than 
those with continuous structures. NC7 
CMAQ  performance is impacted adversely when 
instrumented tools such as DDM are deployed, in 
both file size reduction and run time.  

The default output format in recent CMAQ 
versions is 64-bit offset, which handles files whose 
sizes are larger than 2 GB (Unidataa

 2021). It is 
therefore desirable for NC7 IOAPI to retain this 
output option to allow for handling larger files 
when compression is less efficient. As in CMAQ’s 
regular run scripts, the environment variable 
IOAPI_OFFSET_64 is reinstated in NC7 IOAPI. 
Table 2 shows all the environment variables 
recognized by the current implementation.  

     

Environment  

variable 

Default  

value 

 

Other  

values 

 

Effects 

COMPRESS_NC Y N 

 Y to 
compress output  
 N to disable 
compression  
 Ignored if 
IOAPI_OFFSET_64  Y 

USR_DFLAT_LVL 2 
1 thru 

9 except 
2 

 1 mildest, 9 
heaviest  
 Ignored if 
COMPRESS_NC  N 

IOAPI_OFFSET_64 N Y 

 Y to output 64-
bit offset and disable 
compression  
 N to resume 
compression.  

 Table 2. Environment settings associated with NC7 
IOAPI 

 
  
COMPRESS_NC is Y by default, unless users 

wish to disable compression where N would be 
specified instead.  

USR_DFLAT_LVL allows users to choose how 
much file size reduction is needed on the expense 

of processing time. 1 is the mildest but quicker and 
9 the heaviest but slower. The setting will be 
ignored if COMPRESS_NC is set to N.  

Normally, IOAPI_OFFSET_64 is N by default, 
letting CMAQ or other Models3 programs to go 
ahead with compression. If large file support is 
desired, users can set it to N, which disables 
COMPRESS_NC and ignore any settings in 
USR_DFLAT_LVL.    

  
 
5. SUMMARY 
 

The compressible netcdf-4/IOAPI reduces file 
size drastically in files with sparse data 
structure.  This results in freeing up significant disk 
space without the need to do the offline 
compression that consumes extra system and run 
times. While compression is less effective on files 
with continuous data structure, the IOAPI still 
offers users an option to restore the 64-bit offset 
output format.    

  
 
6. DISCLAIMER 
 

NC7 IOAPI was implemented based on the 
official IOAPI developed and maintained by Baron 
Advanced Meteorological Systems (BAMS). It is 
not related to any policy endorsed by U.S.EPA or 
BAMS.   
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