
Presented at the 20th Annual CMAS Conference, Chapel Hill, NC, November 1-5, 2021

1

TESTING INTERNALLY COMPRESSED NETCDF-4 FILE FORMAT WITHIN SMOKE-IOAPI
FRAMEWORK

Roger Kwok* and Sarika Kulkarni

Air Quality Planning & Science Division, California Air Resources Board, Sacramento, CA, USA

11. INTRODUCTION

Continuous advances in disk storage and CPU

speeds have allowed for ever increasing file
sizes in numerical modeling of geoscientific
fields. However, the growth in both number and
size of input files outpaces the computer power,
often putting stress on the underlying files sytems.
For example, CMAQ’s DESID (Murphy et al
2021) allows CMAQ to use many individual
emissions sectors as input, which may quickly
fill up the available disk space.

To manage the storage and computational
demands, files are often compressed
to smaller sizes when they are not used for
modeling. File compression and
decompression is typically
accomplished offline with common standalone
tools such as GZIP (Gaille & Adler
2000) or parallel BZIP (Gilchrist
& Nicholov 2021). Offline compression and
decompression processes
are not conducted simultaneously
with modeling/simulations, such as emissions
ingestion into an air quality model. As a result, the
processes before and after modeling not only take
up additional times, but also occupy much of the
RAM and/or cache memories that often slow down
computational and access speeds of other
users’ .

Climate studies conducted within California Air
Resources Board (Zhao et al 2020)
revealed that the size of netcdf-3
classic WRF output files could be reduced by ~50
% via the offline “nccopy” command
(Unidatab 2021). Further experiment with this
offline command on SMOKE emissions in classic
format showed drastic size reduction by up to
99%. But in terms of disk space management and
processing time, this offline approach is less
efficient. To let Models-3 programs, such as
SMOKE and CMAQ, access to netCDF files in a
compressed format, it is desirable to enable the
common program interface IOAPI (Community
2021) to read, write and
compress the netCDF files on the fly.

In Section 2, we illustrate steps to
compile netCDF with compression. We
also indicate the key Fortran subroutines that need
to be edited to accommodate this
novel compression approach within IOAPI
framework

File size and runtime statistics resulting from
SMOKE and CMAQ runs are reported in Section
3. Insights gained from the
observation are discussed in Section 4. Additional
output options and environment settings required
for end-users are described in the same section.

2. LIBRARY IMPLEMENTATION

Conventional IOAPI is compiled

with netcdf classic without any other additional
libraries. To enable IOAPI's compression
capability, zlib and hdf5 need to be incorporated in
the netCDF. Here are the steps needed to
achieve our library implementation:

Step 1 Install zlib;
Step 2 Install hdf5;
Step 3 Install netcdf with zlib and hdf5 libraries

from Steps 1 and 2;
Step 4 Install netcdf fortran based on

the netcdf in Step 3;
Step 5 Compile edited IOAPI with all the

libraries from Steps 1 through 4;
Step 6 Compile m3tools based on the IOAPI

in Step 5.

In IOAPI, the key change lies in the subroutine

“crtfil3.F90” that is called mostly by
“open3.F90” subroutine. The original version only
has “NF_DEF_VAR” statements each of which
creates
a netCDF variable. Compression was enabled
by adding a “NF_DEF_VAR_DEFLATE” statement
after each “NF_DEF_VAR” call. Also used by
Zender (2016), the DEFLATE call is based on
Deutsch’s algorithm (1996), which chops the
whole dataset into blocks that are
individually compressed.

Presented at the 20th Annual CMAS Conference, Chapel Hill, NC, November 1-5, 2021

2

The new IOAPI (NC7 IOAPI hereafter) reads
any netcdf format, but writes NC7 by default.
Alternative output format is allowed with user
specification as described in Section 4.

3. TEST CASE AND VISUALIZATION

Two cases with identical area FF10 inventory

and supporting files were processed by
compiling SMOKEwith different compression
options ...The first case (NC3) uses SMOKE
with netcdf3-classic/IOAPI libraries in which no
compression capability was installed The second
case (NC7) uses SMOKE with netcdf4-
classic/IOAPI libraries with compression. To take
storage management into account, run times to zip
up NC3 files were also calculated. Two offline
compression tools, GZIP and parallel BZIP
(PBZIP2), were used. The resulting run times and
output file sizes during SMOKE processing for an
annual simulation (I.e. 365 days) of gridded hourly
emissions for the two cases is shown in Table
1. First, we show that the per-day file size of
NC7 was reduced to 8.7% of its NC3
counterpart, producing a 91% file size reduction.
Second, we found that with respect to SMOKE run
time alone, the NC7 version takes 36% longer to
run than its NC3 counterpart.
 

SMOKE area run for 365 days

NC3 NC7

NC7-
to-NC3

ratio
Remarks

SMOKE

Per day
file
size (MB)

633.0 55.0 8.7% NC3
uncompressed

Run time
(min)

30.6 41.6 135.9% Time taken by
SMOKE

GZIP

Per day
file
size (MB)

55.0 N\A 100.0% NC3
compressed

Runtime
(min)

29.6 N\A 69.2%
Time taken
by SMOKE

+ gzip

PBZIP2
Per day
file
size (MB)

52.0 N\A 105.8% NC3
compressed

Runtime
(min)

85.6 N\A 35.8%
Time taken

by SMOKE
+ pbzip2

Table 1. SMOKE area run for 365 days. NC3 means
SMOKE compiled with netcdf3-classic libraries, while
NC7 means that with netcdf4-classic compressible
libraries.

However, when offline compression time on

NC3 files is combined with the SMOKE run time,
the NC7 SMOKE still runs faster given that it
compresses output files while writing them out.
Compared to GZIP, NC7 SMOKE has only 69% of
its combined run time; for PBZIP2, NC7
SMOKE has 36%.

Similar statistics were also observed (not
shown) when a SMOKE utility called Mrggrid was
also used to merge multiple emission sectors for a
month. The resulting NC7 files had much smaller
file size than NC3. Additionally, the NC7 SMOKE
took less time to finish its run time compared to
NC3 SMOKE plus offline compression combined.

Lastly, VERDI was used to verify that the
output files from the NC3 and
NC7 run cases resulted in identical
datasets. Visualization tools such as NCVIEW,
MATPLOTLIB, and VERDI, work for NC7 gridded
files. In particular, VERDI not only can load NC7
and NC3 files onto the same console, but also can
perform arithmetic operations on the pair to derive
a third tile plot, assuming the pair have common
header attributes. .

4. DISCUSSIONS

While NC7 SMOKE, its utilities as well as NC7

IOAPI m3tools reduce file size tremendously,
CMAQ benefits much less from it. In-house
simulations indicate that CMAQ
runs need longer runtimes (~ 15 –20%) with NC7
IOAPI compared to its NC3 counterpart. Also,
compressing CMAQ output files such as CGRID,
ACONC among others, results in only few percent
reduction in file size. The contrasting behaviors
exhibited by SMOKE files and CMAQ output
files could be attributed to to their respective data
structure. In SMOKE, data are typically filled into
initialized arrays which result in discrete and
sparse data structure. On the other hand, CMAQ
output fields are written out after undergoing
numerous multistage in-model calculations that
span across grid cells and layers over the entire
simulation period. As a result, all elements are

Presented at the 20th Annual CMAS Conference, Chapel Hill, NC, November 1-5, 2021

3

filled in the arrays thus rendering the data
structure as continuous. According to Deutsch’s
algorithm, arrays are typically chopped into
smaller blocks. The latter are then compressed
individually. Arrays with sparse data structure are
much easier to chop up and compressed than
those with continuous structures. NC7
CMAQ performance is impacted adversely when
instrumented tools such as DDM are deployed, in
both file size reduction and run time.

The default output format in recent CMAQ
versions is 64-bit offset, which handles files whose
sizes are larger than 2 GB (Unidataa

 2021). It is
therefore desirable for NC7 IOAPI to retain this
output option to allow for handling larger files
when compression is less efficient. As in CMAQ’s
regular run scripts, the environment variable
IOAPI_OFFSET_64 is reinstated in NC7 IOAPI.
Table 2 shows all the environment variables
recognized by the current implementation.

  

Environment

variable

Default

value

Other

values

Effects

COMPRESS_NC Y N

 Y to
compress output
 N to disable
compression
 Ignored if
IOAPI_OFFSET_64 Y

USR_DFLAT_LVL 2
1 thru

9 except
2

 1 mildest, 9
heaviest
 Ignored if
COMPRESS_NC N

IOAPI_OFFSET_64 N Y

 Y to output 64-
bit offset and disable
compression
 N to resume
compression.

 Table 2. Environment settings associated with NC7
IOAPI

COMPRESS_NC is Y by default, unless users

wish to disable compression where N would be
specified instead.

USR_DFLAT_LVL allows users to choose how
much file size reduction is needed on the expense

of processing time. 1 is the mildest but quicker and
9 the heaviest but slower. The setting will be
ignored if COMPRESS_NC is set to N.

Normally, IOAPI_OFFSET_64 is N by default,
letting CMAQ or other Models3 programs to go
ahead with compression. If large file support is
desired, users can set it to N, which disables
COMPRESS_NC and ignore any settings in
USR_DFLAT_LVL.

5. SUMMARY

The compressible netcdf-4/IOAPI reduces file
size drastically in files with sparse data
structure. This results in freeing up significant disk
space without the need to do the offline
compression that consumes extra system and run
times. While compression is less effective on files
with continuous data structure, the IOAPI still
offers users an option to restore the 64-bit offset
output format.

6. DISCLAIMER

NC7 IOAPI was implemented based on the
official IOAPI developed and maintained by Baron
Advanced Meteorological Systems (BAMS). It is
not related to any policy endorsed by U.S.EPA or
BAMS.

7. REFERENCES

Community Modeling and Analysis System: The

EDSS/Models-3 I/O API documentation,
available at
https://cmascenter.org/ioapi/documentation/all_v
ersions/html/index.html (last access November
1, 2021), -2021.

Deutsch, L. P.: DEFLATE compressed data format
specification version 1.3, Tech. Rep. IETF
RFC1951, Internet Engineering Task Force,
Menlo Park, CA, USA, doi:10.17487/RFC1951,
1996.

Gailly, J.-L. and Adler, M.: zlib documentation,
available at: http://zlib.net (last access: November
1, 2021), 2000.
Gilchrist, J. and Nikolov, Y.: Parallel BZIP2

documentation, available at
http://compression.ca/pbzip2 (last access:
November 1, 2021), 2003-2021.

HDF Group: HDF5: API Specification Reference
Manual, The HDF Group, Champaign-Urbana,

https://cmascenter.org/ioapi/documentation/all_versions/html/index.html
https://cmascenter.org/ioapi/documentation/all_versions/html/index.html
http://compression.ca/pbzip2

Presented at the 20th Annual CMAS Conference, Chapel Hill, NC, November 1-5, 2021

4

IL, USA, 2015. Available at
https://docs.hdfgroup.org/hdf5/develop/_r_m.htm
l (last access October 5, 2021).

Murphy, B.N., Nolte, C.G., Sidi, F., Bash, J.O.,
Appel, K.W., Jang, C., Kang, D., Kelly, J.,
Mathur, R., Napelenok, S., Pouliot, G., and Pye,
H.O.T.: The Detailed Emissions Scaling,
Isolation, and Diagnostic (DESID) module in the
Community Multiscale Air Quality (CMAQ)
modeling system version 5.3.2. Geosci. Model
Dev., 14, 3407–3420, 2021.
https://doi.org/10.5194/gmd-14-3407-2021

Rew, R., Hartnett, E., and Caron, J.: NetCDF-4:
Software implementing an enhanced data model
for the geosciences, in: Proceedings of the 22nd
AMS Conference on Interactive Information and
Processing Systems for Meteorology, 24–28
January 2006, p. 6.6, American Meteorological
Society, AMS Press, Boston, MA, USA, 2006.

Unidata Program Centera: Questions about
netCDF large file support FAQ, available at
https://www.unidata.ucar.edu/software/netcdf/fa
q-lfs.html (last access: November 2021)

Unidata Program Centerb: NetCDF 4.8.0, FAQ
available at:
https://www.unidata.ucar.edu/software/netcdf/do
cs/faq.html (last access: November 1, 2021),
2021.

Zhao, Z., Di, P., Chen, S., Avise, J., Kaduwela, A.,
and DaMassa, J.: Assessment of climate
change impact over California using dynamical
downscaling with a bias correction technique:
method validation and analyses of summertime
results. Climate Dynamics, 54, 3705-3728,
2020. Assessment of climate change impact
over California using dynamical downscaling
with a bias correction technique: method
validation and analyses of summertime results |
SpringerLink

Zender, C.S.: Bit Grooming: statistically accurate
precision-preserving quantization with
compression, evaluated in the netCDF
Operators (NCO, v4.4.8+). Geosci. Model Dev.,
9, 3199-3211, 2016. www.geosci-model-
dev.net/9/3199/2016/doi:10.5194/gmd-9-3199-
2016

https://docs.hdfgroup.org/hdf5/develop/_r_m.html
https://docs.hdfgroup.org/hdf5/develop/_r_m.html
https://doi.org/10.5194/gmd-14-3407-2021
https://www.unidata.ucar.edu/software/netcdf/faq-lfs.html
https://www.unidata.ucar.edu/software/netcdf/faq-lfs.html
https://www.unidata.ucar.edu/software/netcdf/docs/faq.html
https://www.unidata.ucar.edu/software/netcdf/docs/faq.html
https://link.springer.com/article/10.1007/s00382-020-05200-x
https://link.springer.com/article/10.1007/s00382-020-05200-x
https://link.springer.com/article/10.1007/s00382-020-05200-x
https://link.springer.com/article/10.1007/s00382-020-05200-x
https://link.springer.com/article/10.1007/s00382-020-05200-x
http://www.geosci-model-dev.net/9/3199/2016/doi:10.5194/gmd-9-3199-2016
http://www.geosci-model-dev.net/9/3199/2016/doi:10.5194/gmd-9-3199-2016
http://www.geosci-model-dev.net/9/3199/2016/doi:10.5194/gmd-9-3199-2016

