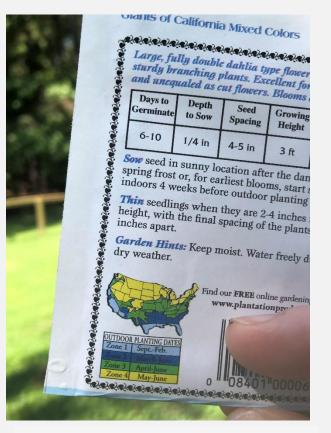


Dynamically Downscaled Projections of Phenological Changes across the Contiguous United States

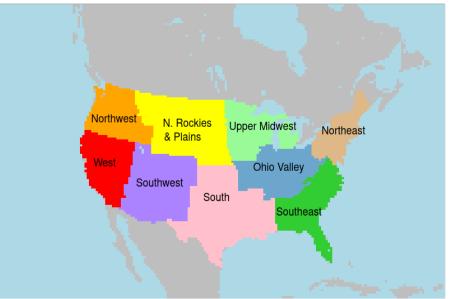
CMAS Conference October 2020

Megan Mallard¹, Kevin Talgo², Jared Bowden³, & Tanya L. Spero¹ ¹National Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina ²GDIT, Durham, North Carolina ³Dept. of Applied Ecology, N. C. State University, Raleigh, North Carolina



- Downscaling is the process of using global climate model (GCM) output to drive a finer-scale limited-area regional climate model (RCM), which adds value through:
 - –Improved representation of finer-scale processes & features (e.g., topography) due to finer grid resolution
 - -Scale-appropriate physics
 - -Increased temporal resolution

Phenological indicators (PI)


- Phenology examines the responses of plants & animals to seasonal changes
- Here, PI are examined that relate to the period of wintertime dormancy in plants & onset of spring
- Why examine PI?
 - -Availability of hourly data
 - -Focus on *transitional seasons* instead of winter/summer extremes

When do I plant these Zinnia seeds in my back yard?

- Weather Research & Forecasting (WRF) model version 3.4.1, with 36-km domain
- Driven by two CMIP5 global models, using Representative Concentration Pathway (RCP) 8.5
 - Community Earth System Model (CESM)
 - Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model (CM3)
- Additional run using RCP 4.5 not shown
- Time periods
 - -Historical: 1995-2005
 - -Future: 2025-2100

Natl. Centers for Environmental Information (NCEI) regions on WRF domain

Chilling Units (CU)

- Deciduous fruit trees and other plants benefit from a period of dormancy or "rest" in cooler temperatures before the growing season occurs
- Observational studies show temperatures around 6° C most favorable for rest completion

Temperature		Chill units	
°C	°F	contributed	
<1.4	<34	0	
1.5 - 2.4	35 - 26	0.5	
2.5 - 9.1	37 - 48	1	
9.2 - 12.4	49 – 54	0.5	
12.5 - 15.9	55 - 60	0	
16 - 18	61 - 65	-0.5	
>18	>65	-1	

- Table 1. Conversion of selected temperatures to Chill Units.
- CU is calculated from hourly 2-m temperatures (T2) using the Utah model (Richardson et al., 1974, Hort. Science)
- Maximum possible CU contribution each hour is 1
- CU accumulate from October 1 to May 1

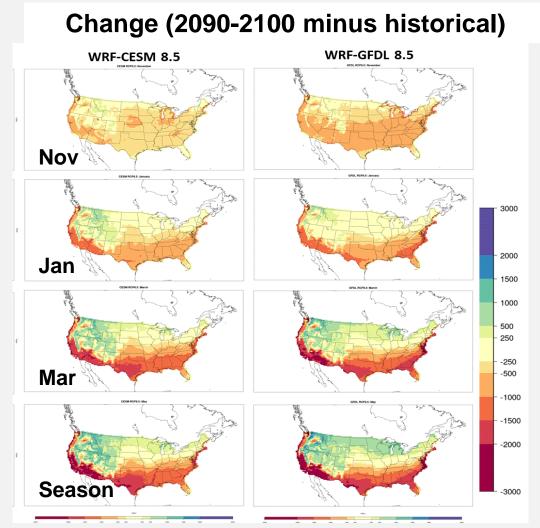
Effect of Chilling on Fruit Trees

- Most apple & peach trees have chilling requirement of 500-1000 CU
- Too few CU: a poor harvest, as flowering or fruiting is late or does not occur
- Too many CU: breaks dormancy too early, may be damaged by hard freezes or disease

2 varieties of peach trees in Texas, along with their recommended CU

https://www.reporternews.com/story/money/industries/agriculture/2017/04/16/too-few-chill-hours-could-affect-texas-fruit-crop/100465006/

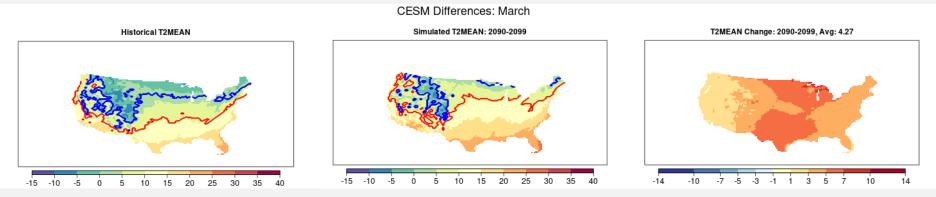
 CU bias varies regionally, but Southeast and South are areas of enlarged bias



A	CU			
Area	CESM	GFDL		
CONUS	-176	56		
Northwest	-47	-216		
West	-41	50		
N. Rockies & Plains	66	-63		
Southwest	18	61		
Upper Midwest	-83	-12		
South	-48	492		
Ohio Valley	-125	182		
Southeast	-658	227		
Northeast	-251	-175		

Simulation-average season-accumulated CU bias, compared to PRISMderived CU. The max & min absolute bias are bolded.

SEPA United States Environmental Protection Projected Change in Chilling Units


- Decreasing CU, especially in southern CONUS
- Increases in western & northern CONUS in late season
- In most regions & periods, changes exceed model mean abs. error (MAE) under RCP 8.5

Average changes (2090-2100 minus historical values) in accumulated CU for at the end of November, January, March, and the season (1 October – 1 May)

- Areas of 5-7° C of warming through central CONUS
- Northern CONUS -> warming T2 produces more frequent temperatures in favored CU range
- Southern CONUS -> warming produces decrease in CU as temperatures too high to positively accumulate CU

Example from March, WRF-CESM8.5 of historical and end-of-century average 2-m temperatures with difference field. Areas where $T2 \le 2.5^{\circ}$ C are contoured in blue. Areas where $T2 \ge 9.1^{\circ}$ C are contoured in red. Max CU

8

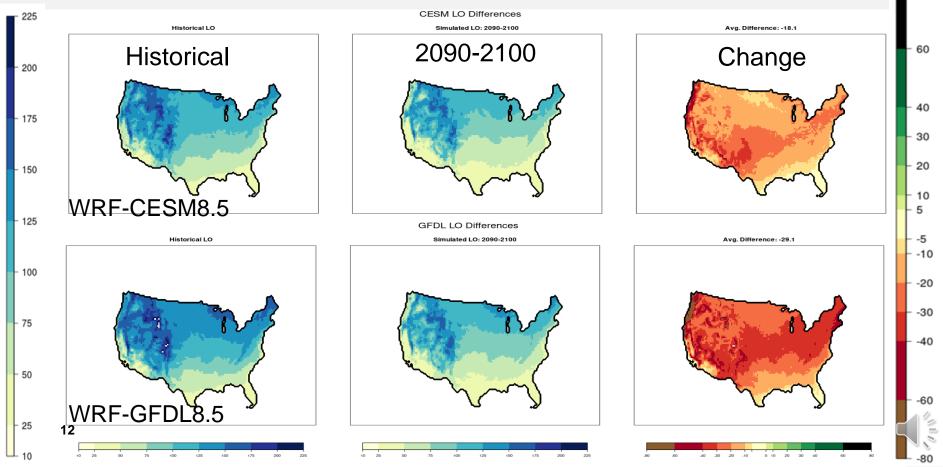
Extended Spring Indices

- Date (relative to January 1) of leafout (LO) and first bloom (FB)
- Calculated for 3 plants (lilac & 2 varieties of honeysuckle)
- Has been shown to capture the onset of spring in a variety of agricultural and natural plant species, both in subtropical & temperate environments

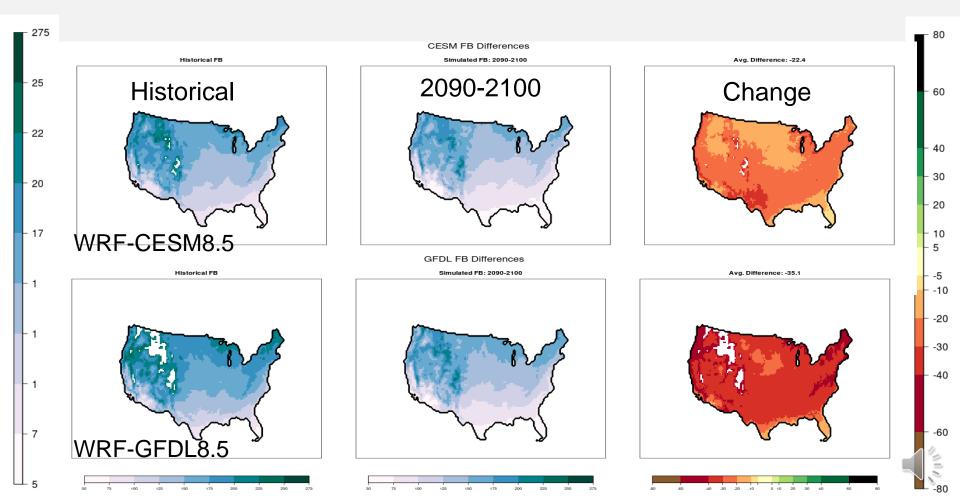
Calculation of Leafout & First Bloom

- Leafout is calculated based on:
 - -Number of days since 1 January
 - -Recent growing degree hour accumulation (hourly temperature relative to 0.6° C)
- First bloom must occur after leafout does, and is based on:
 - -Number of days since leafout
 - -Recent growing degree hour accumulation
- Frequency of temperature > 0.6° C is critical

Simulated spring onset (both LO and FB) consistently occurs later than observed


	Aroo	LO		FB	
	Area	CESM	GFDL	CESM	GFDL
	CONUS	27.1	41.6	38.9	57.7
	Northwest	42.2	55.1	50.1	71.3
Northwest N. Rockies Upper Midwest Northeast & Plains Ohio Valley	West	41.8	54.2	53.7	70.9
	N. Rockies & Plains	22.7	38.5	30.3	48.0
Southwest	Southwest	41.2	54.5	47.7	63.7
South	Upper Midwest	10.9	31.8	23.7	48.4
	South	29.7	36.1	42.4	56.5
	Ohio Valley	21.1	42.3	32.8	55.3
	Southeast	22.0	37.3	38.2	60.8
	Northeast	14.1	38.2	30.0	57.9

Simulation-average LO and FB bias (in days). The max & min absolute bias for each field are bolded. SI values are compared to Natl. Phenological Network values.


Leafout Change

- LO dates occur earlier in all projected periods
- CONUS-avg: -18 to -29 days by end-of-century under RCP 8.5
- Regional changes exceed MAE in Northeast & Upper Midwest for WRF-CESM8.5

- Similar change in spring onset when looking at first bloom
- CONUS-avg: -22 to -35 days by end-of-century
- Regional changes do not exceed MAE

Summary & Future Work

Summary of PI Change

- -Chilling units: Decreasing CU over southern CONUS, late-season increases to north
- -Spring onset: Spring advancement consistent with IPCC (2014) estimate of -1 to -3 days per decade. But end-of-century changes generally do not exceed model error.
- -Projected changes are similar among model runs
- Future Work
 - Refine projections of PI with planned simulations over 12-km CONUS domain featuring updated physics

References

- Allstadt, A.J., S.J. Vavrus, P.J. Heglund, A.M. Pidgeon, W.E. Thogmartin, and V.C. Radeloff (2015): Spring plant phenology and false springs in the conterminous US during the 21st century. Environ. Res. Lett. 10 (2015) 104008.
- IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.
- Richardson EA, Seely SD, Walker DR. 1974. A model for the estimation of completion of rest for 'Redhaven' and 'Elberta' peach trees. HortScience 9: 331-332.
- USA National Phenology Network. 2019. Gridded historical maps (1981 near realtime), USA-NPN, Tucson, Arizona, USA. Data set accessed 2019-09-18 at http://dx.doi.org/10.5066/F7XD0ZRK

The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

