

19th Annual Community Modeling and Analysis System (CMAS) Conference

Table of Contents

- Introduction
- Methodology
- Results
- Discussions
- Conclusion

2

3 October 2020

• Tehran:

- Population: 13,260,000 (2017)
- Metropolitan area: 2,235 km²
- Urban area: 1,200 km²
- Agricultural area :44,858 hectares

October 2020

Air Quality in Tehran (March 2019 – March 2020)

Reference: Tehran Air Quality and Noise Report, Period of March 2019-March 2020, QM99/03/01(U)/1

5

October 2020

PM2.5: the criteria pollutant in Tehran

6

October 2020

PM2.5: the criteria pollutant in Tehran

- According to official reports by TAQCC onTehran emission inventory, the largest share of PM emissions (roughly 61%) originates from mobile sources while the remainder stems from non-traffic related emissions (16.5% from energy conversion (including refineries and power plants), 18% from industries, 2.5% from household and commercial sources, and 2.5% from terminals.)[1]
- The agricultural emissions around Tehran are not accounted in TAQCC report.
- However, other studies on Tehran's PM2.5 emission inventory [2] show that the share of agricultural sector in Tehran PM2.5 emissions could be as high as 5% of total emissions.

Reference[1]: Shahidzadeh, H. (2018). Tehran emission inventory in 2017.
 Reference[2]: Taksibi, Farzaneh, Hossein Khajehpour, and Yadollah Saboohi.

 Tehran, Iran, TAQCC.
 "On the environmental effectiveness analysis of energy policies: A case study of air pollution in the megacity of Tehran." Science of The Total Environment 705 (2020): 135824.

 October 2020
 F. Taksibi, H. Khajehpour, Y. Saboohi, Remote Sensing-Based Estimates of Waste Burning in Tehran, Iran

8 October 2020

- Time and place of the thermal anomalies are identified with VIIRS night fire products in the *World View Map* from 2017 to 2019.
- Trajectory profile based on meteorological condition is studied with *Hysplit* model.
- The trajectory helps to check whether the emissions from the agricultural and municipal waste burning will impact Tehran's air quality.

World View Map:

- Visually explores the past and the present from a satellite's perspective.
- A spatiotemporal pattern of heatreleasing of thermal anomalies is produced by *The MODIS* product and *The VIIRS* (Visible Infrared Imaging Radiometer Suite (Night, 375m)).

Reference: https://worldview.earthdata.nasa.gov

Landsat 8

- High spatial resolution by two sensors:
 - Operational Land Imager (OLI)
 - Thermal Infrared Sensor (TIRS).
- OLI collects data at a 30-m spatial resolution with eight bands located in the visible, near-infrared and shortwave infrared regions of the electromagnetic spectrum, plus an additional panchromatic band at 15-m spatial resolution.
- In this satellite we can merge multi-spectral bands (with 30 meter spatial resolution) with panchromatic band (high spatial resolution 15 meter) to output high resolution images.

Reference: https://earthexplorer.usgs.gov

11

Hysplit model

- The Air Resources Laboratorys' *HYbrid Single-Particle Lagrangian Integrated Trajectory* (*HYSPLIT*) model is a complete system for computing both simple air parcel trajectories and complex dispersion and deposition simulations.
- The model calculation method is hybrid between the Lagrangian approach, which uses a moving frame of reference as the air parcels move from their initial location, and the Eulerian approach, which uses a fixed three-dimensional grid as a frame of reference.

Reference: Draxler, R. R., and G. D. Rolph. "HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://ready. arl. noaa. gov/HYSPLIT. php). NOAA Air Resources Laboratory." *Silver Spring, MD* 25 (2010).

13 October 2020

Results Identified Thermal Anomalies

Results Frequency of Thermal Anomalies

Results

	peak time	2017	peak time	2018
1	Jun/Oct	273	June/Sep	228
2	Jun/Oct	274	June/Aug	245
2	Jun/Oct	20	June/Aug	16
3	Jan/June	16	June	7
4	May	8		0
5	May/June	52	June/July	33
6	July/Aug	13	July	6
(7)	June/July	24	June	17
8	June	26	March	19
y	Feb	3	Aug	2
10	May/June	40	July	29
11	Feb/April	14	March	6
(12)	June/July	31	May/July	21
13	June	9	Sep/Oct	4
14	May/June/Aug	114	June/July	90
15	July/Sep	17	June/July	22
16	June/Sep	32	Jan/Aug	10
17	March	5	March	9
18	April/May	17	Aug	5
19	May/June	7	June/July	15
20	July	11	March	4
21	June	9	May	6
22	May	8	July	7
23	June/July	35	June	28
24	June/July	11	June	13
25	lupo/Aug	4.0	April	-
25	June	10	April	5
20	June	/	Julie	/
2/	July	13	lupo/luby	1
20	JUly	0	June	10
29	August	1	June	1
30	August	2	Julie	15
31	Nov	1	Sep	5
32	NOV	1	Julie/July	21
	DM () M		11111	

Types of Thermal Anomalies

16

Results Samples from Landsat 8 satellite

Thermal band

Panchromatic band combination with Multispectral band

• Example of a

Panchromatic band combination

Results Samples from Landsat 8 satellite

Thermal band

• Example of an Agricultural Waste burning

18

October 2020

19 October 2020

• Sample Livestock Production Plant

• Sample Agricultural Waste Burning

• Sample Agricultural Waste Burning

F. Taksibi, H. Khajehpour, Y. Saboohi, Remote Sensing-Based Estimates of Waste Burning in Tehran, Iran

Trajectory Direction: Forward Duration: 24 hrs Vertical Motion Calculation Method: Model Vertical Velocity Meteorology: 0000Z 29 Jun 2017 - GDAS1

• Sample Agricultural Waste Burning

• Sample Waste Burning

Discussion

Discussion

Hourly PM2.5 concentration in the ShahreRey station

According to the measured concentration near the agricultural waste burning

areas, the PM2.5 concentration increased slightly during 9:00 to 13:00 AM.

27 October 2020

Conclusion

- Crop residue burning and city waste burning considered among the main sources of air pollution in developing countries.
- In the previously developed Tehran's emission inventory, the agricultural waste burning and city waste burning has been neglected. While can account for 5% of the total PM2.5 emissions.
- Municipal waste burning was more often in June and September in 2017.
- Number of times anomalies have been observed in this area increased in 2018.
- Crop residue burning have occurred in 4 points in Tehran's surroundings.

Conclusion

- Agricultural waste burning mainly happened in June and July which are considered less polluted seasons in Tehran
- The number of times anomalies have been observed in these areas decreased in 2018.
- The *Hysplit* model indicates that some non-systematic emissions related to agricultural wastes and crop residue burning can effect Tehran's air quality in the peak times of burnings.
- Therefore, considering agricultural waste burning and waste management is essential in air quality control and management.

Thank you for your attention!

Hossein Khajehpour, Ph.D.

Postdoctoral Researcher, Department of Energy Engineering, Sharif University of Technology, Tehran, Iran Tel: +98(21)66166143 Mob:+98 912 139 3343 Email: khajehpour@energy.sharif.ir

30