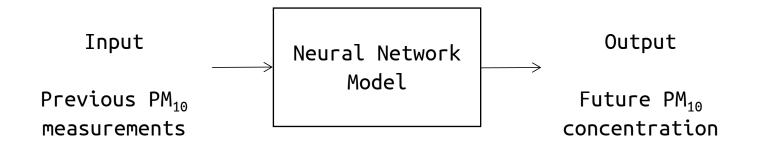


Air Quality Forecasting Using Deep Learning Techniques

Alican MERTAN
Istanbul Technical University
mertana@itu.edu.tr

Alper Unal
Istanbul Technical University
aunal@itu.edu.tr

Overview



Overview

Dataset

Approach

Experiments

Results

Conclusion

Hourly PM_{10} measurements of Adana

Hourly PM_{10} measurements of Adana

Hourly PM_{10} measurements of Adana from 2009 to 2018

Training: 2009-2016

Validation: 2017

Testing: 2018

Hourly PM_{10} measurements of Adana from 2009 to 2018

Training: 2009-2016

Validation: 2017

Testing: 2018

Features

PM₁₀ concentration

Date

Hour


```
Hourly PM<sub>10</sub> measurements of Adana from 2009 to 2018
```

Training: 2009-2016

Validation: 2017

Testing: 2018

Features

```
PM<sub>10</sub> concentration (float)
Date (categorical)
Hour (categorical)
```



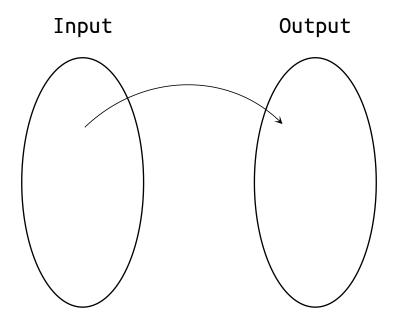
```
Hourly PM<sub>10</sub> measurements of Adana
from 2009 to 2018
        Training: 2009-2016
        Validation: 2017
         Testing: 2018
Features
         PM<sub>10</sub> concentration (float)
        Date (categorical)
        Hour (categorical)
        one-hot encoding ex: February [0 1 0 0 0 0 0 0 0 0 0]
         float ex: February 0.09
```

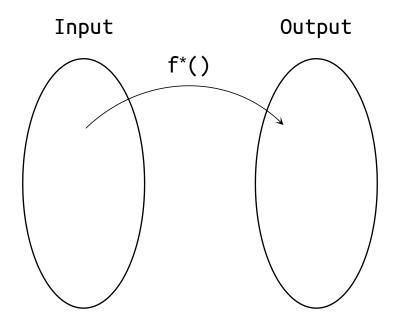


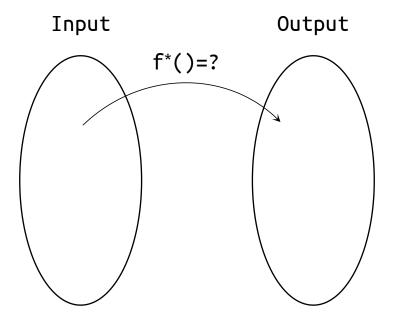
```
Hourly PM<sub>10</sub> measurements of Adana
from 2009 to 2018
        Training: 2009-2016
        Validation: 2017
        Testing: 2018
Features
        PM_{10} concentration (float)
        Date (categorical)
        Hour (categorical)
        one-hot encoding ex: February [0 1 0 0 0 0 0 0 0 0 0]
        float ex: February 0.09
Problems
        Missing data (due to failure at the station)
```



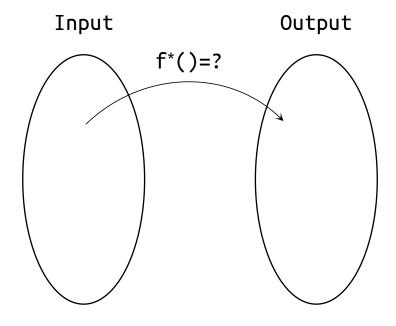
```
Hourly PM<sub>10</sub> measurements of Adana
from 2009 to 2018
        Training: 2009-2016
        Validation: 2017
        Testing: 2018
Features
        PM_{10} concentration (float)
        Date (categorical)
        Hour (categorical)
        one-hot encoding ex: February [0 1 0 0 0 0 0 0 0 0 0]
        float ex: February 0.09
Problems
        Missing data (due to failure at the station)
        Solution: linear interpolation (only for training data and up to two consecutive
hours)
```

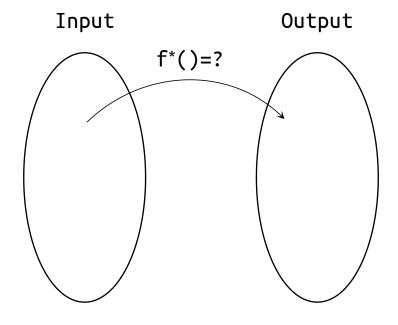




Basics

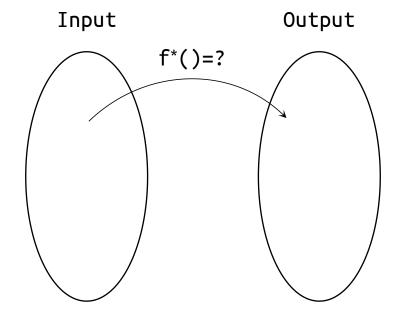


Approximate $f^*()$ with f(;w), and learn w from data



Approximate
$$f^*()$$
 with $f(;w)$, and learn w from data
$$w = \underset{W}{\operatorname{argmin}} \sum (f^*(\text{input}) - f(\text{input};w))^2$$

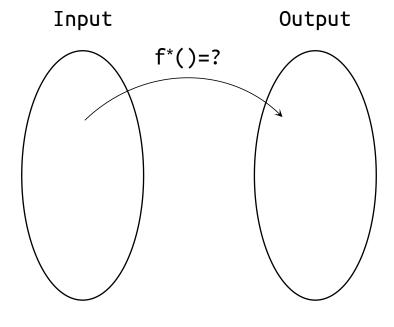
Basics



Approximate
$$f^*()$$
 with $f(;w)$, and learn w from data $w = \underset{w}{\operatorname{argmin}} \sum (f^*(\text{input}) - f(\text{input};w))^2$

f() is modeled with a neural network

Basics



Approximate
$$f^*()$$
 with $f(;w)$, and learn w from data $w = \underset{w}{\operatorname{argmin}} \sum (f^*(input) - f(input;w))^2$

f() is modeled with a neural network
Important to choose right architecture

Experimented architectures

Fully connected

Convolutional

RNN

LSTM

eq2seq

Experimented architectures

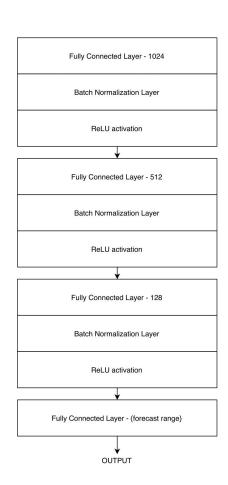
Fully connected

Convolutional

NN

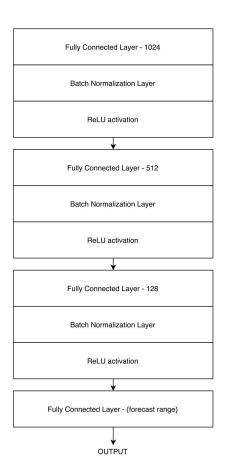
STM

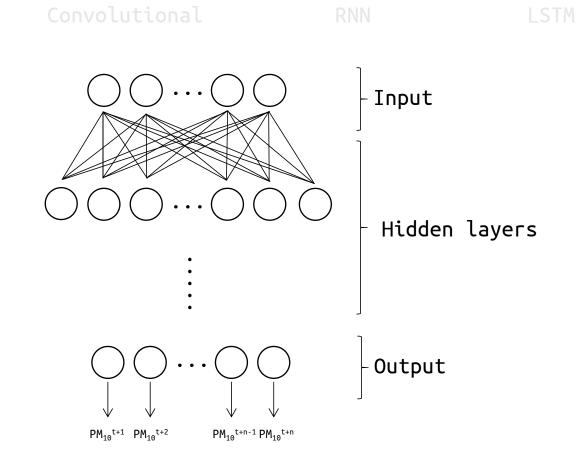
eq2seq



Experimented architectures

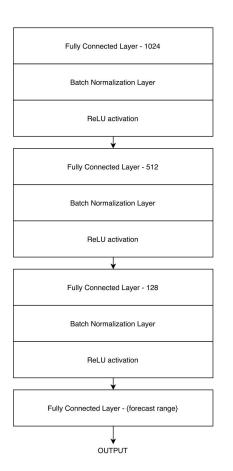
Fully connected

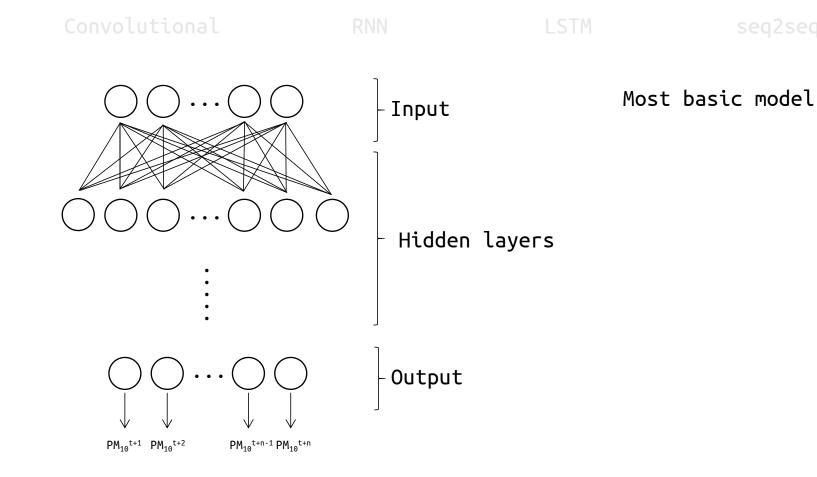




Experimented architectures

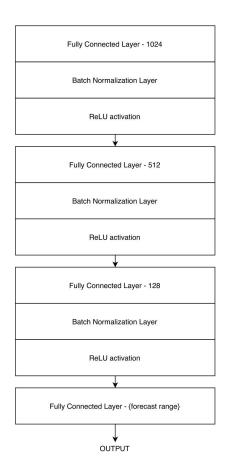
Fully connected

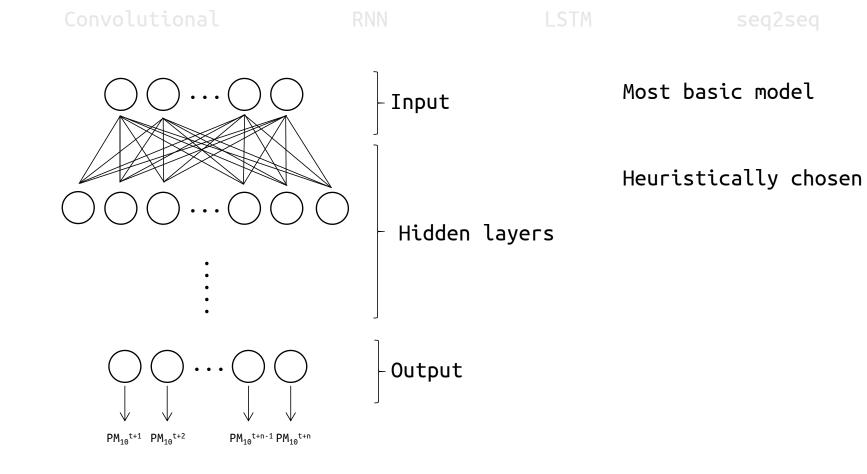




Experimented architectures

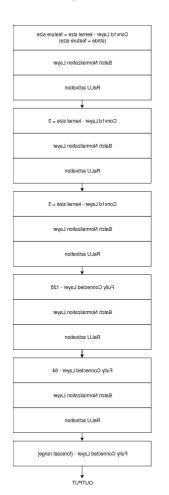
Fully connected





Experimented architectures

Fully connected Convolutional RNN LSTM seq2sec



Fully Connected Layer - 128

Batch Normalization Layer

ReLU activation

Fully Connected Layer - 64

Batch Normalization Layer

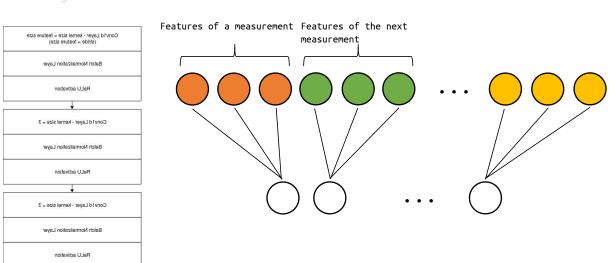
ReLU activation

Fully Connected Layer - (forecast range)

OUTPUT

Experimented architectures

Fully connected Convolutional RNN LSTM seg2sed



First layer summarizes each measurement

Experimented architectures

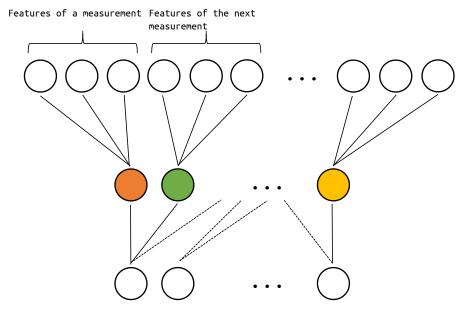
Fully connected

Convolutional

LS

seq2seq

Conv1d Layer - kernel size = feature size (stride = feature size) Batch Normalization Layer ReLU activation Conv1d Layer - kernel size = 3 Batch Normalization Layer ReLU activation Conv1d Layer - kernel size = 3 Batch Normalization Laver Fully Connected Layer - 128 Batch Normalization Layer ReLU activation Fully Connected Layer - 64 Batch Normalization Layer ReLU activation Fully Connected Layer - (forecast range) OUTPUT



First layer summarizes each measurement

Next layers fuse information of temporally neighboring measurements

Experimented architectures

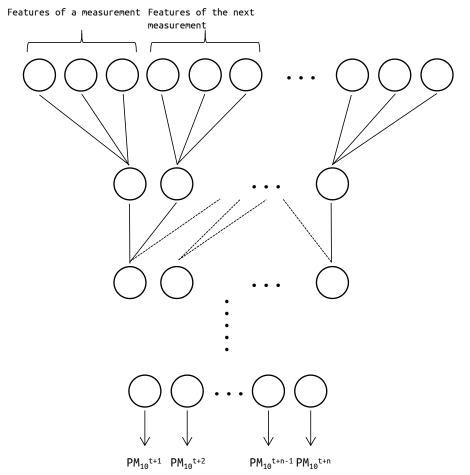
Fully connected

Convolutional

LS.

seq2seq

Conv1d Layer - kernel size = feature size (stride = feature size) Batch Normalization Layer ReLU activation Conv1d Layer - kernel size = 3 Batch Normalization Layer ReLU activation Conv1d Layer - kernel size = 3 Batch Normalization Laver Fully Connected Layer - 128 Batch Normalization Layer ReLU activation Fully Connected Layer - 64 Batch Normalization Layer ReLU activation Fully Connected Layer - (forecast range) OUTPUT



First layer summarizes each measurement

Next layers fuse information of temporally neighboring measurements

Experimented architectures

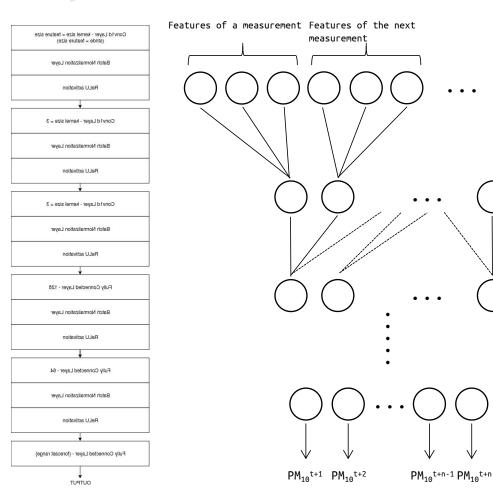
Fully connected

Convolutional

RNN

STM

seq2seq



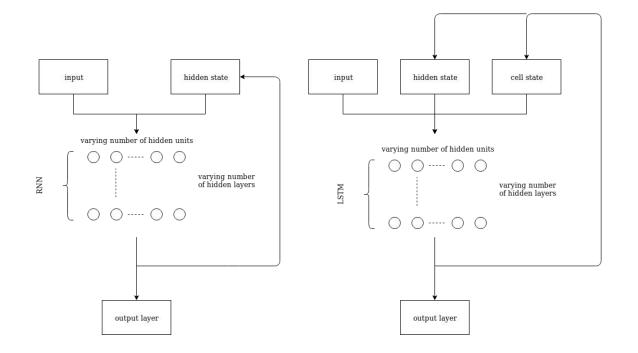
First layer summarizes each measurement

Next layers fuse information of temporally neighboring measurements

Heuristically chosen

Experimented architectures

Fully connected Convolutional RNN LSTM seq2seq



Experimented architectures

Fully connected

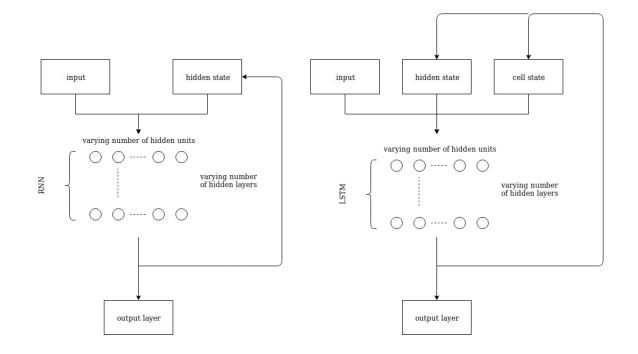
Convolutional

RNN

LSTM

eq2seq

Specifically designed for sequential data



Experimented architectures

Fully connected

Convolutional

RNN

LSTM

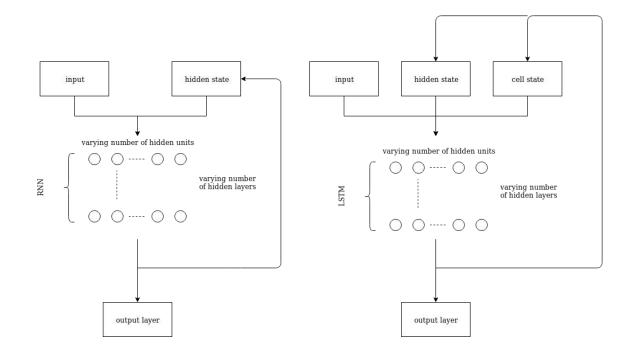
eq2seq

Specifically designed for sequential data

Experimented architectural choices

Number of hidden layers

Number of hidden units in each layer



Experimented architectures

Fully connected

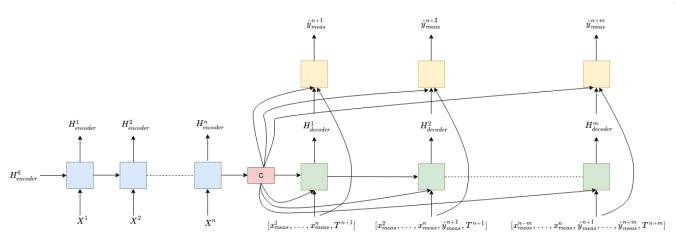
Convolutional

RNN

LSTM

seq2seq

Adapted from Marino et al.[1]



Experimented architectures

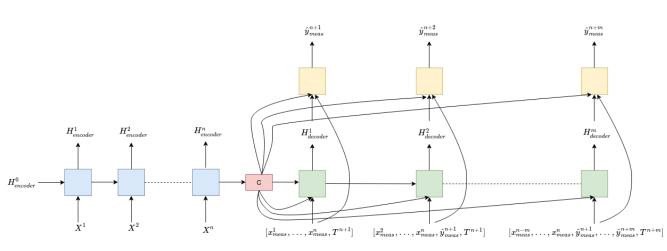
Fully connected

Convolutional

RNN

LSTM

seq2seq



Adapted from Marino et al.[1]

Most complex model

Experimented architectures

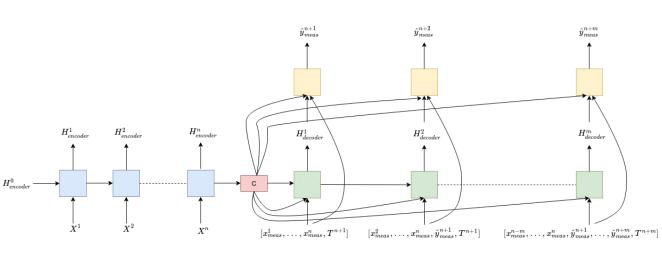
Fully connected

Convolutional

RNN

STM

seq2seq



Adapted from Marino et al.[1]

Most complex model

Consists of GRU units

Experimented architectures

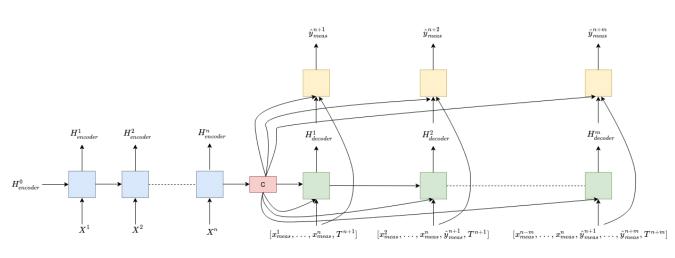
Fully connected

Convolutional

RNN

.STM

seq2seq



Adapted from Marino et al.[1]

Most complex model

Consists of GRU units

Encoder summarizes contextual information Decoder outputs PM_{10} concentrations

Experimented architectures

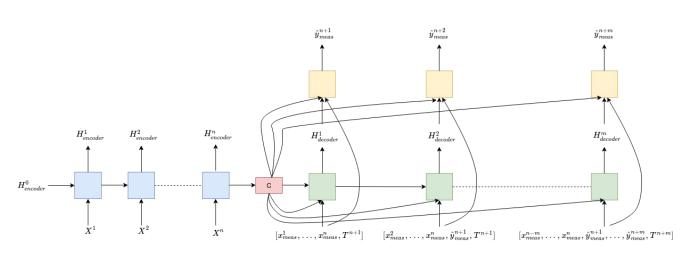
Fully connected

Convolutional

RNN

.STM

seq2seq



Adapted from Marino et al.[1]

Most complex model

Consists of GRU units

Encoder summarizes contextual information Decoder outputs PM_{10} concentrations

Experimented architectural choices

Number of hidden layers

Number of hidden units in each layer


```
Feature types
One-hot
Float
```



```
Feature types
One-hot
Float
Architectures
Fully connected
Convolutional
RNN
LSTM
seq2seq
```



```
Feature types
One-hot
Float
Architectures
Fully connected
Convolutional
RNN
LSTM
seq2seq
Architectural hyperparameters
Number of hidden layers
Number of units in hidden layers
```



```
Feature types
        One-hot
        Float
Architectures
        Fully connected
        Convolutional
        RNN
        LSTM
        seq2seq
Architectural hyperparameters
        Number of hidden layers
        Number of units in hidden layers
Forecast range
        1 (next hour)
        24 (next day)
```



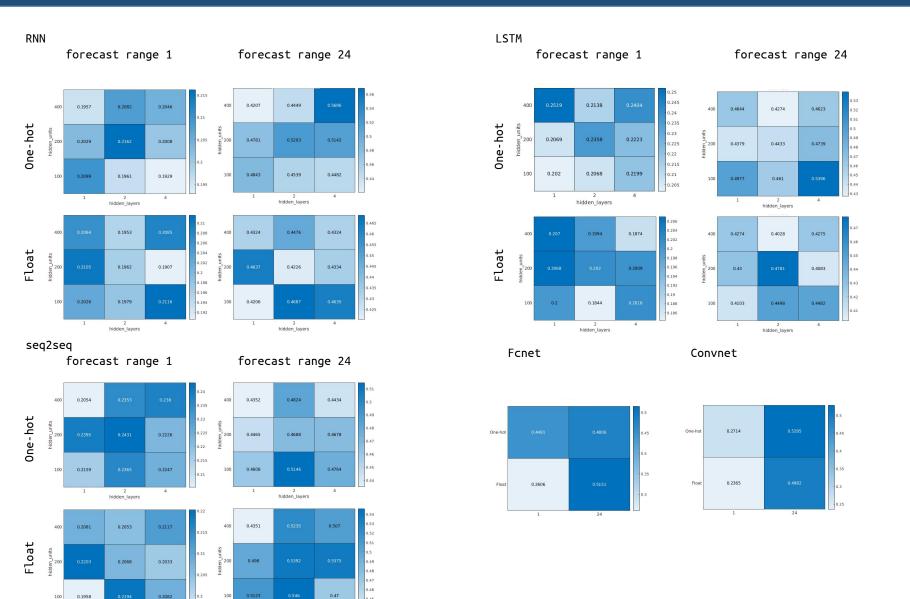
```
Feature types
        One-hot
        Float
Architectures
        Fully connected
        Convolutional
        RNN
        LSTM
        seq2seq
Architectural hyperparameters
        Number of hidden layers
        Number of units in hidden layers
Forecast range
        1 (next hour)
        24 (next day)
Look back
        1 week (168 measurement)
```

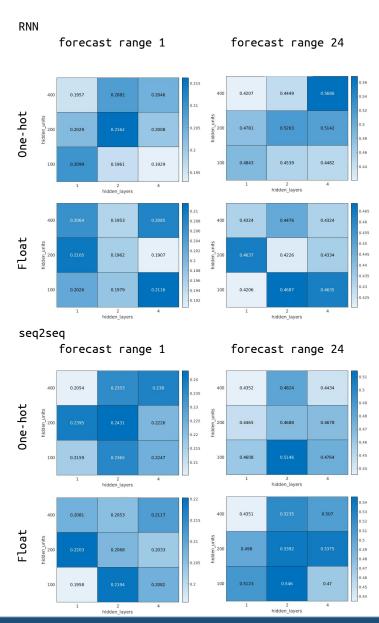


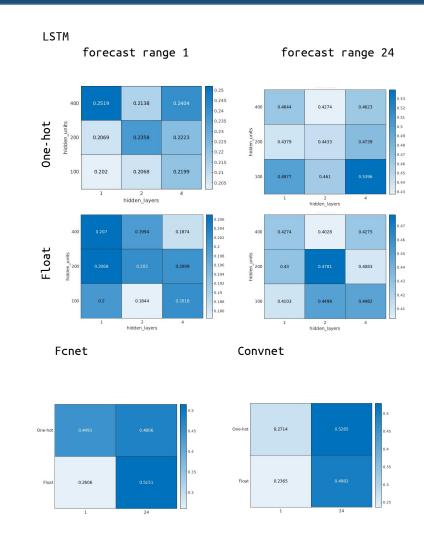
```
Feature types
        One-hot
        Float
Architectures
        Fully connected
        Convolutional
        RNN
        LSTM
        seq2seq
Architectural hyperparameters
        Number of hidden layers
        Number of units in hidden layers
Forecast range
        1 (next hour)
        24 (next day)
Look back
        1 week (168 measurement)
```

Performance Measure

$$rell1 = \frac{|PM_{10}|^{groundtruth} - PM_{10}|^{prediction}|}{PM_{10}|^{groundtruth}}$$







Takeaways

Float representation is better

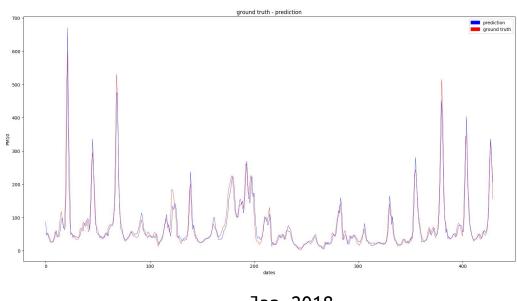
No general trend in model size

Architecture	Forecast range 1	Architecture	Forecast range 24
Baseline	0.2032	Baseline	0.6021

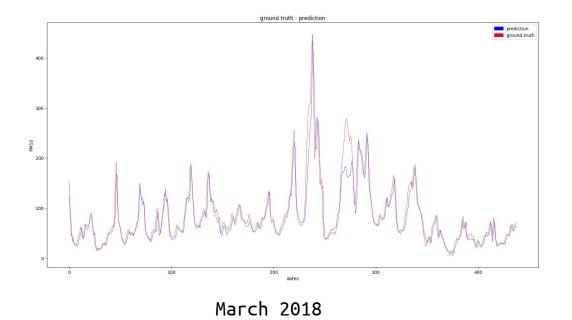
Architecture	Forecast range 1	Architecture	Forecast range 24
Baseline	0.2032	Baseline	0.6021
Fcnet_float	0.2606	Fcnet_onehot	0.4806
Convnet_float	0.2365	Convnet_float	0.4982
RNN_float_4_100	0.1929	RNN_float_1_100	0.4206
LSTM_float_2_100	0.1844	LSTM_float_2_400	0.4028
seq2seq_float_1_100	0.1958	seq2seq_float_1_400	0.4351

Example predictions from test set

LSTM_float_2_100 forecast range 1



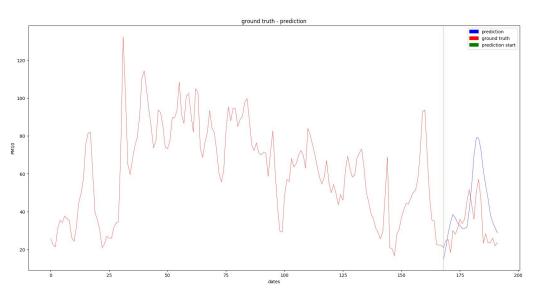
Jan 2018



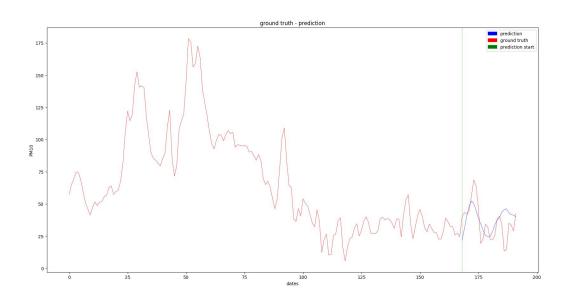
1773

Example predictions from test set

LSTM_float_2_400 forecast range 24



input: 02.05.2018-09.05.2018 output: 10.05.2018



input: 10.05.2018-17.05.2018 output: 18.05.2018

Conclusion

Experimented with different representations architectures hyperparameters forecast ranges

Conclusion


```
Experimented with different representations architectures hyperparameters forecast ranges
```

RNN and its variants outperform simpler models

Conclusion

Experimented with different

representations architectures hyperparameters forecast ranges

RNN and its variants outperform simpler models

Performance drops as the forecast range increases

Additional information can be utilized

THANK YOU FOR LISTENING!

