AIR QUALITY IMPACT OF OFF PEAK DELIVERY OF GOODS IN THE REGIONAL MUNICIPALITY OF PEEL

Redefining possible.

CMAS Conference 2020 October 26 - 30, 2020, Virtual

Martin Gauthier, Jeff Lundgren, Greg Conley, Julia Veerman, Jyotsna Kashyap, <u>Golnoosh Bizhani</u> RWDI, Consulting Engineers & Scientists

> Louise Aubin, Kathie Brown, Nancy Lotecki Regional Municipality of Peel Public Health Department

GOAL OF THE STUDY

Previous Assessment:

- Design a reliable high resolution Air Quality photochemical model tool that can be used for urban planning (Base Case)
- Use the tool to assess the impact of population growth on health in the Region on Peel (Scenario)

Current Assessment:

 Air quality impact of an Off-peak delivery (OPD) emission scenario, where delivery of goods occurs during evening and overnight hours.

Base Case

- Current emissions (2010) were modeled
- Model results showed good agreement with monitoring data from NAPS for key pollutants
- Model results are sensitive to changes in emission intensity, chemistry, location and timing
- Model is well suited to inform high-level planning decisions

- Base Case
- Population Growth Scenarios
- Several population growth scenarios were assessed
- Model results generated great interest in planning agencies
- Many opportunities were identified to extract valuable data to help inform planning and decision making

- Base Case
- Population Growth Scenarios
- Updated Base Case (2015)
- OPD Scenario

- New base case (2015) was modelled
- Additional scenarios were developed in conjunction with the Region of Peel Steering Committee
- Off-Peak Delivery (OPD) Scenario was identified as the next step
- OPD: delivery of goods only occur during evening and overnight hours (7pm-7am)
 - Pilot OPD was Launched and showed overall 11% reduction in emissions
 - Impact to air quality to be assessed prior to full scale implementation

Model Details - Photo Chemical Modeling

- Meteorological model used to simulate winds, clouds and temperature over the study area.
- 2. Air emission inventories (Canada, US) are processed to account for spatial and temporal variations in emissions using GIS and emission processing tools.
- 3. Air quality models simulate the transport, dispersion, chemical reactions and deposition of complex compounds

Model Details – Nested Domains

Model Details – The OPD Scenario

 The OPD scenario

- Delivery trucks only (no cars)
- The retail sector only
 - Retail delivery \rightarrow 43% of light trucks \rightarrow 17% of medium/heavy trucks
- Same road network
- OPD applied to the Region of Peel only, both for urban and rural areas
- OPD hours: 7 pm 7 am
- 100% participation rate
- Overall emission reduction = 11%
- OPD applied for weekdays and weekends
- The months of August and March were selected for modelling

• Base Case

 Diurnal Variations in base case

Diurnal variations in emissions of trucks on urban highways

- Base Case
- Diurnal Variations in base case
- OPD Annual Emissions Comparison

Scenario	CO	NOx	VOC	NH3	SO2	PM10	PM2.5		
OnRoad mobile emissions in Peel									
Base Case	35,417	7,635	2,802	205	53	593	270		
Off-Peak Delivery	34,375	7,186	2,708	199	51	562	251		
Emission reduction	-3%	-6%	-3%	-3%	-4%	-5%	-7%		
Total emissions in Peel									
Base Case	78,033	19,577	29,630	1,192	4,516	5,577	3,685		
Off-Peak Delivery	76,991	19,128	29,536	1,186	4,514	5,546	3,666		
Emission reduction	-1%	-2%	0%	0%	0%	-1%	-1%		

- Base Case
- Diurnal Variations in base case
- OPD Annual Emissions Comparison
- OPD Diurnal Emissions Comparison

- Base Case
- Diurnal Variations in base case
- OPD Annual Emissions Comparison
- OPD Diurnal Emissions Comparison
- OPD Spatial
 Distribution

CCTM peel_opd_100 1KM 2015069 0000

• NO₂

- NO₂
- O₃

- NO₂
- O₃
- PM_{2.5}

CCTM opd100-base15 1KM 2015069 0000

$$\frac{10}{10.4} \times (100 \times (e^{(0.000871 \times NO_2)} - 1)) + (e^{(0.000537 \times O_3)} - 1) + (e^{(0.00048 \times PM_{2'5})} - 1)$$

- NO₂
- O₃
- PM_{2.5}
- AQHI

$$\frac{10}{10.4} \times (100 \times (e^{(0.000871 \times NO_2)} - 1)) + (e^{(0.000537 \times O_3)} - 1) + (e^{(0.00048 \times PM_{2'5})} - 1)$$

- NO₂
- O₃
- PM_{2.5}
- AQHI

- NO₂
- O₃
- PM_{2.5}
- AQHI

Frequency of AQHI at high risk for the Base Case and the OPD scenario

(count of all grid cells at all hours with AQHI>7)

Month	Base Case				OPD			
	1km domain		Peel Region		1km domain		Peel Region	
	Count	%	Count	%	Count	%	Count	%
March	5550	0.069	398	0.039	5849	0.073	511	0.050
August	788	0.010	293	0.029	963	0.012	439	0.043

- NO₂
- O₃
- PM_{2.5}
- AQHI

Frequency of AQHI at high risk for the Base Case and the OPD scenario

(count of all grid cells at all hours with AQHI>7)

Month	Base Case				OPD			
	1km domain		Peel Region		1km domain		Peel Region	
	Count	%	Count	%	Count	%	Count	%
March	5550	0.069	398	0.039	5849	0.073	511	0.050
August	788	0.010	293	0.029	963	0.012	439	0.043

- NO₂
- O₃
- PM_{2.5}
- AQHI

Frequency of AQHI at high risk for the Base Case and the OPD scenario

(count of all grid cells at all hours with AQHI>7)

Month		Ba	ise Case		OPD			
	1km domain		Peel Region		1km domain		Peel Region	
	Count	%	Count	%	Count	%	Count	%
March	5550	0.069	398	0.039	5849	0.073	511	0.050
August	788	0.010	293	0.029	963	0.012	439	0.043

Summary and Conclusions

Image credit: Peel's region Goods Movement Strategic Plan 2017-2021 https://www.peelregion.ca/pw/transportation/goodsmovement/pdf/goods-movement-strategic-plan-2017-2021.pc

Summary and Conclusions

- Air quality effects of an off-peak delivery scenario were examined in comparison with a 'normal traffic' base-case
- WRF-SMOKE-CMAQ photochemical modeling was used to model atmospheric photochemical reaction, dispersion and transport of pollutants
- Overall 3% 7% reduction in on-road emissions in the Region of Peel
- Overall minimal change in concentration of key pollutants
- Up to 0.5 reduction in AQHI
- Slight increase in the number of high-risk air quality hours/locations

THANK YOU

Redefining possible.

