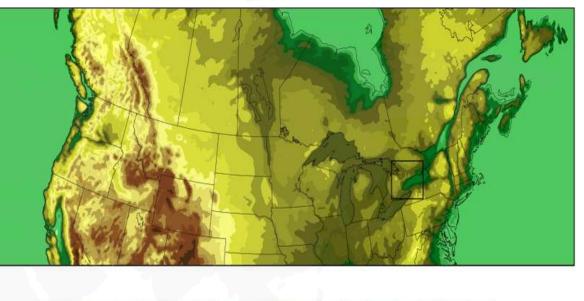
Estimating Societal Damages from Aviation Emissions in Canada

Tugce Erdem, Yasar Burak Oztaner, Marjan Soltanzadeh Amir Hakami

Carleton University Department of Civil and Environmental Engineering October 2020

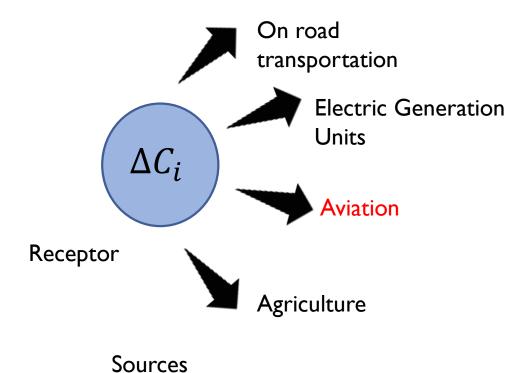

Outline	
Introduction Methodology Preliminary results Conclusion	

OBJECTIVES

- Aviation emissions have been found to cause ~16 000 premature deaths (Koo et al.,2013)
- Development of national marginal benefit database for aircraft emissions
- Overcoming the limitation of estimating MBs
- Presenting backward/adjoint analysis to provide location-specific aviation-attributable marginal

damages

	Canada				
Study Period	2 weeks in July and February 2014, each (plus 2 days for Forward and 1 day for Backward spin-up period)				
Meteorology	ECMWF initialization / WRF v3.8.1				
Emissions	SMOKEv4.5				
Spatial Resolution	12km (480 x 200)				
СТМ	CMAQ v5.0 and its ADJOINT				
IC/BC	Created by Hemispheric-Scale CMAQ				
Epidemiological model	Crouse et al. (2012) and Burnett et al. (2014)				
Adjoint cost function	Chronic $PM_{2.5}$ exposure mortality, and acute O_3 and NO_2 constructed from two-week simulations in each season.				

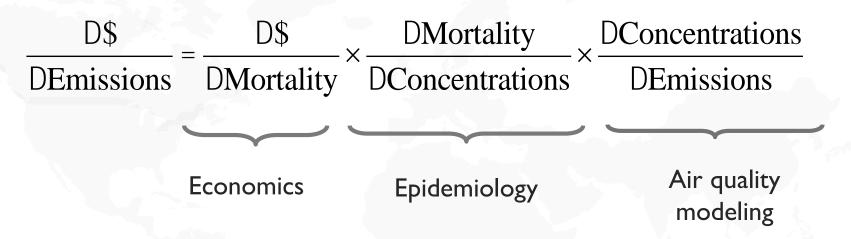


0 25 50 100 150 200 275 350 500 750 1000 1250 1500 1750 2000 2250 3000

Figure 1: Topographic map of the North American simulation domain

ADJOINT SENSITIVITY

The adjoint cost function (Pappin et al., 2016)



Methodology

 $J = V_{SL} \sum_{i} M_{o,i} P_i (1 - e^{\beta \Delta C i})$

where, J= Marginal Benefit (MB) β = epidemiological concentration factor V_{SL} = value of statistical life M_o = baseline non-accidental mortality rate P = population

HEALTH IMPACT EVALUATION

• Benefit Per Ton (BPT) Using Acute O_3 and NO_2 and chronic $PM_{2.5}$ in the Air Quality Benefit Assessment Tool (AQBAT v3.0) of Health Canada

- Baseline Mortality Rates (BMR) obtained from AQBAT v3.0
- Population data, age 25+ obtained from Statistics Canada 2010. Aggregated to our domain (12 km spatial

resolution)

Airports	Latitude	Longitude	BPT PM _{2.5} (\$1000/ton)	BPT NO _X (\$/ton)
Toronto Pearson International Airport	43.6777	-79.6248	3820	4580
Vancouver International Airport	49.1967	-123.1815	390	830
Montreal-Trudeau International Airport	45.4657	-73.7455	3320	10140
Calgary International Airport	51.1215	-114.0076	1900	5140
Edmonton International Airport	53.3054	-113.5774	1410	5490
Ottawa Macdonald-Cartier International Airport	45.3192	-75.6692	2300	20140
Winnipeg James Armstrong Richardson International Airport	49.9098	-97.2365	1300	3880
Québec City Jean Lesage International Airport	44.8836	-63.5094	1250	23400
Billy Bishop Toronto City Airport	43.6285	-79.396	910	6820
Region of Waterloo International Airport	49.9569	-119.3787	1800	52740

Table 1 BPT values of surface $PM_{2.5}$ and NO_X emissions at airports

Benefit-per-Ton NO_x (LTO)

Benefit-per-Ton NO_x (LTO)

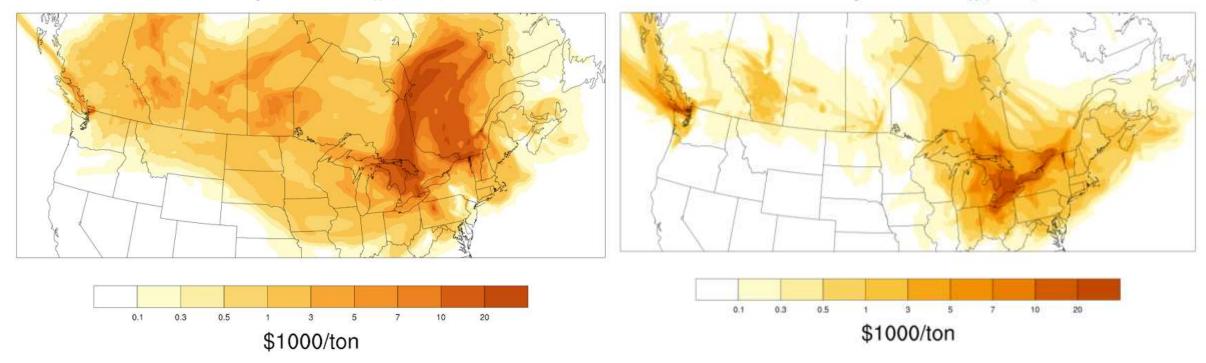


Figure 2 BPTs for NO_X emissions under 900 m altitude where landing/takeoff takes place Left (Winter) and Right (Summer)

Benefit-per-Ton PM_{2.5} (LTO)

Benefit-per-Ton PM_{2.5} (LTO)

Figure 3 BPTs for PM_{2.5} emissions under 900 m altitude where landing/takeoff takes place Left (Winter) and Right (Summer)

Benefit-per-Ton PM_{2.5} (LTO,<900m)

Benefit-per-Ton NO_x (LTO, <900m)

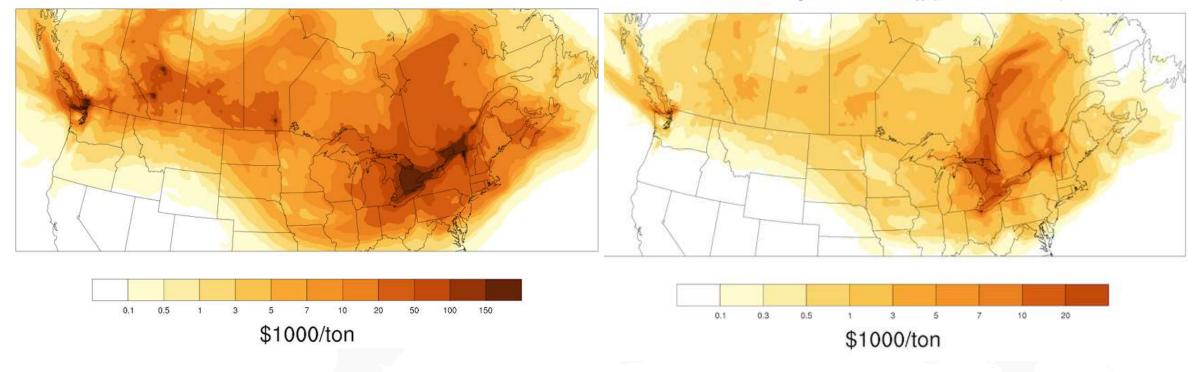


Figure 4 BPTs for PM_{2.5} and NO_X emissions under 900 m altitude where landing/takeoff takes place

Benefit-per-Ton PM_{2.5} (Cruising, 3km)

Benefit-per-Ton NO_x (Cruising, 3km)

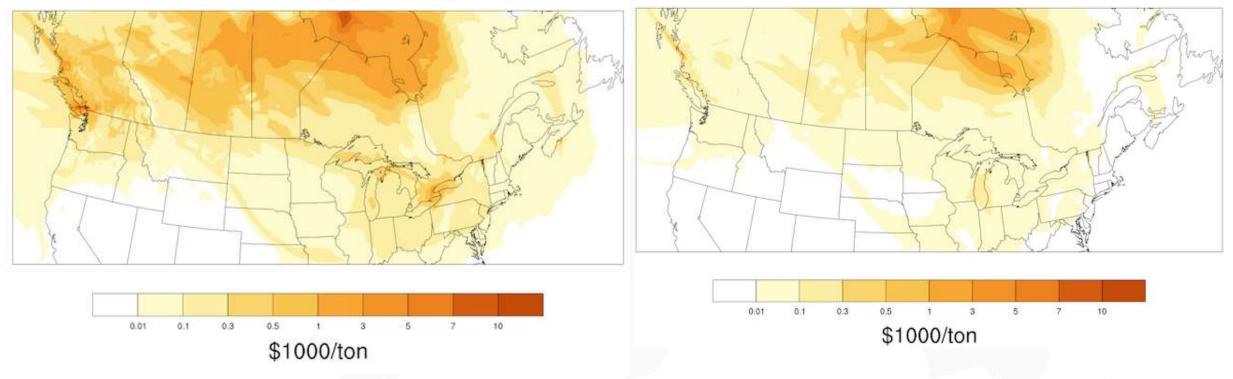


Figure 5 BPTs for $PM_{2.5}$ and NO_X emissions at 3 km altitude that is one of the aircraft cruising altitude

Benefit-per-Ton PM_{2.5} (Cruising, 10km)

Benefit-per-Ton NO_x (Cruising, 10km)

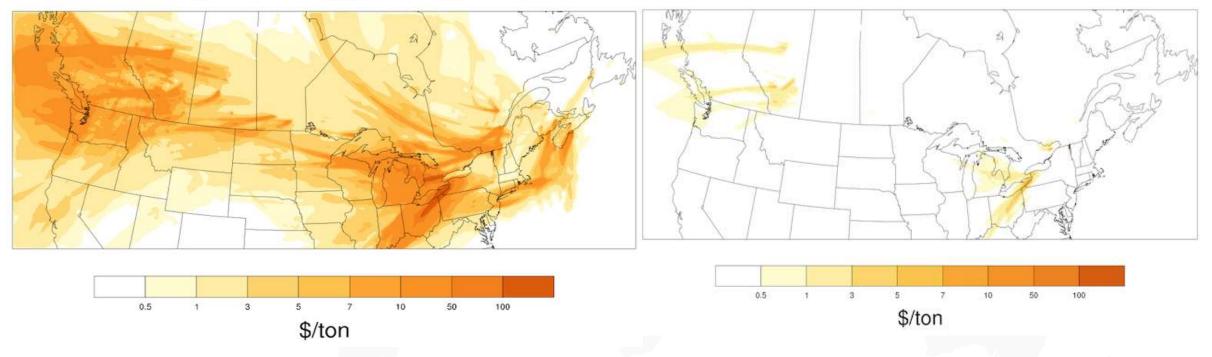


Figure 6 BPTs for $PM_{2.5}$ and NO_X emissions at 10 km altitude that is a common aircraft cruising altitude

- The largest estimated BPT of reducing PM_{2.5} comes from Toronto Pearson International Airport
- Aviation associated health benefits can be as high as \$1,370,000 per ton of reduction of PM_{2.5} and \$53,000 per ton of reduction of NO_x emissions due to LTO activities.
- Estimated marginal benefit of reducing one ton of $PM_{2.5}$ emissions is \$260 while \$8 per ton of reduction of NO_x emissions that contributes to surface $PM_{2.5}$ generated at common aircraft cruising altitude.
- The largest health benefit estimates are attributed to landing/takeoff that contributes to a quarter of the benefits.

REFERENCES

Christopher K Gilmore, Steven R H Barrett, Jamin Koo and Qiqi Wang, Temporal and spatial variability in the aviation NOxrelated O3 impact. Environmental Research Letter, 2013 Vol:8 no:3

Crouse DL, Peters PA, van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion O, Khan S, Atari DO, Jerrett M, Pope CA, Brauer M, Brook JR, Martin RV, Stieb D, Burnett RT. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environ Health Perspect. 2012 May;120(5):708-14. doi: 10.1289/ehp.1104049.

Burnett RT, Stieb D, Brook JR, Cakmak S, Dales R, Raizenne M, Vincent R, Dann T. Associations between short- term changes in nitrogen dioxide and mortality in Canadian cities. Arch Environ Health. 2004 May;59(5):228-36.

A J Pappin, A Hakami, P Blagden, M Nasari, M Szyszkowicz, and Burnett RT, Health benefits of reducing NO x emissions in the presence of epidemiological and atmospheric nonlinearities. Environmental Research Letter, 2016 Vol:11 no:6

ACKNOWLEDGEMENTS

- Funding from Clean Transportation System Research and Development Program, Transport Canada
- Computational resources from Compute Canada

THANK YOU.