Role of sea fog over the Yellow Sea on air quality with the direct effect of aerosols

Jia Jung1, Yunsoo Choi1*, David C. Wong2, Delaney Nelson1, and Sojin Lee3

(1) Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, US
(2) U.S. Environmental Protection Agency, Research Triangle Park, NC, US
(3) Department of Safety and Environment Research, The Seoul Institute, Republic of Korea

• Jia Jung: jjung21@central.uh.edu, helloiamjia@gmail.com
• Dr. Yunsoo Choi: ychoi23@central.uh.edu
The Yellow Sea, located between East China and the Korean Peninsula, has frequent episodes of sea fog.

Researchers have typically categorized sea fog in this region as advection fog (Yang et al., 2018; Yang and Gao 2019; Zhang et al., 2009), which mainly occurs from April to July.

Owing to the contrast between the thermal inertia of land and the ocean, quickly warmed continental air flows over the relatively colder sea surface, resulting in the formation of a temperature inversion.
Sea fog and cloud(fog) chemistry

➢ Sea fog is a hazardous phenomenon

✓ Myriad saturated microscopic water droplets lowers **visibility** within the marine atmospheric boundary layer (Fu et al., 2006; Gao et al., 2007; Gultepe et al., 2007; Yang et al., 2009)

✓ As a pathway of long-range transport of air pollutants, the Yellow Sea, with sufficient supply of moisture, provides a medium for the **various chemical and physical processes of gaseous and aerosol pollutants** (Jeon et al., 2018; H. Lee et al., 2019; S. Lee et al., 2019). → aqueous-phase chemistry, wet deposition, in-cloud scavenging
The addition of aerosols directly affects the solar radiation budget by scattering and absorption. Meteorological changes (e.g. solar radiation, air temperature, PBLH, wind speed, precipitation, and cloud coverage) may also affect air quality.

Using the **WRF-CMAQ two-way coupled model over East Asia for the entire year of 2016**, we conducted four model simulations to study the impact of the direct effect of aerosols on the formation of sea fog and its impact on chemical and physical processes of gaseous and inorganic aerosol pollutants.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Aerosol feedback</th>
<th>dT/dz > -4K/km (moist-adiabatic lapse rate)</th>
<th>cloud chemistry in layers with temperature inversion over the ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>YF</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NFAQ</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>YFAQ</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
We used the **WRF-CMAQ two-way coupled model**, which has two-sub models, WRF model v3.8 and CMAQ model v5.2, developed and released by the US EPA (Wong et al., 2012).

- **SAPRC07 and AERO6 mechanism**
- **Emission data**: the KORUS-AQ emission inventory v5.0 (anthropogenic) and MEGAN 3.0 output (biogenic)
- **Initial and boundary condition**: CMAQ model with in-line dust module covering the entire Northern Hemisphere (HCMAQ) with seasonal scaling for gaseous species

Table 1. Configuration of the WRF-CMAQ two-way model

<table>
<thead>
<tr>
<th>Version</th>
<th>WRF version 3.8 and CMAQ version 5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
<td>Mesoscale double-moment scheme</td>
</tr>
<tr>
<td>Longwave and shortwave radiation</td>
<td>RTM3 scheme</td>
</tr>
<tr>
<td>Land surface</td>
<td>The Peix and Oort land-surface model (Peix and Oort, 1995; Oort and Peix, 2001)</td>
</tr>
<tr>
<td>Surface layer</td>
<td>Peix and Oort surface layer (Peix, 2008)</td>
</tr>
<tr>
<td>Planetary boundary layer</td>
<td>The AGCM planetary boundary layer model (Peix, 2007a; Peix, 2007b)</td>
</tr>
<tr>
<td>Cumulus parameterization</td>
<td>Kain-Fritsch (KF2) scheme with sub-grid cloud fraction advection (Kain et al., 2013; Kain et al., 2014)</td>
</tr>
</tbody>
</table>
| Four-Dimensional Data Assimilation (FDAA) | - Indirect soil moisture and temperature nudging technique (Peix and Oort, 2009; Peix and Oort, 2001)
 - A FDDA option every 12 hours above the PBL for the temperature, the water vapor mixing ratio, and wind components (magnitude of 10^{-2}) (Hogerle et al., 2015) |
| Initial and boundary conditions for meteorology | National Centers for Environmental Prediction FNL (final) operational global analysis data |
| Chemical mechanism | SAPRC07 and AERO6 |
| Horizontal advection | YAMO |
| Vertical advection | WRF omega formula |
| Horizontal-diffusion | Multiscale |
| Vertical-diffusion | ACM2 |
| Initial and boundary conditions for chemistry | The CMAQ model version 5.3 with the in-line dust module covering the entire Northern Hemisphere |
| Cell frequency between the WRF and the CMAQ | 3.1 (We set the timestep for the WRF at 120 seconds. The WRF and the CMAQ exchange meteorological data and aerosol information every 360 seconds) |
Modeling setup

Comparison of the OMI O_3 and HCMAQ output

Comparison of the OMI HCHO and HCMAQ output

Comparison of the OMI NO$_2$ and HCMAQ output

Comparison of the MOPITT CO and HCMAQ output
The response of fog formation over the Yellow Sea to the direct effect of aerosols
The response of fog formation over the Yellow Sea to the direct effect of aerosols
The response of fog formation over the Yellow Sea to the direct effect of aerosols.

- **10 m wind fields**
- **400 m wind fields**
- **temperature difference**
- **Liquid water content in PBL**

NF

- (a)
- (b)
- (c)
- (d)

YF

- (e)
- (f)
- (g)
- (h)
The response of fog formation over the Yellow Sea to the direct effect of aerosols

10 m wind fields

400 m wind fields

temperature difference

Liquid water content in PBL

(a) (b) (c) (d) (e)
The response of fog formation over the Yellow Sea to the direct effect of aerosols

The impact of sea fog on air quality via aqueous chemistry is determined by not only adequate concentration of precursors but also abundant cloud LWC in area.

Therefore, we defined cases of sea fog as those in which the cloud LWC exceeded 0.15 g/m³ with a positive temperature difference between 400 m and 2 m.
The response of air quality to the direct effect of aerosols and sea fog over the Yellow Sea

Results of the integrated process rates (IPRs) over the Yellow Sea

- HADV: horizontal diffusion
- ZADV: vertical advection
- VDIF: vertical diffusion
- DDEP: dry deposition
- AERO: aerosol chemistry
- CLDS: cloud chemistry
- EMIS: emission

Cloud LWC

- Qingdao
- Incheon
- Yellow Sea

Changes in SO4 (µg/m³)

- Qingdao: 6.8 ~ 16.3 %↑
- Incheon
- Yellow Sea
The response of air quality to the direct effect of aerosols and sea fog over the Yellow Sea

Sulfate:
- NF-NFAQ \rightarrow 11.73 % ↑
- YF-YFAQ \rightarrow 12.36 % ↑

\sim -3.79 %

\sim 3.08 %
Conclusion

➢ This study examined the effect of sea fog over the Yellow Sea with the direct effect of aerosols on air quality over East Asia in 2016.

➢ This study found that the direct effect of aerosols could enhance temperature inversions over the Yellow Sea, and it modulates the impact of sea fog on air quality as a source or sink of gaseous and aerosol concentrations.

➢ As the frequency and intensity of sea fog over the Yellow Sea can be affected by not only aerosol concentrations related to emission control policies but also climatological changes that enhance or reduce differences between the temperature of the land and the ocean, further studies could examine such variability in the impact of sea fog over the Yellow Sea.
Thank you! 😊