Spatial-temporal trends in four decades of United States on-road air pollution

Lucas Henneman

Virtual CMAS

October, 2020

The Team

Project 4 of the Harvard/MIT ACE Center EPA STAR Grant #RD83587201

Contributors

- Huizhong Shen
 - Georgia Tech
- Armistead Russel
 - Georgia Tech
- Cory Zigler
 - UT Austin

Acknowledgements

- Christian Hogrefe
 - EPA

Manuscript in review

Motivation: exposure to Traffic Related Air Pollution (TRAP)

Epidemiology and env. justice researchers approximate exposure using:

- Road proximity
- Chemical Transport Models (e.g., CMAQ)
- Satellite measures

TRAP concentrations have changed in time and space over recent decades

How much information about these gradients is contained in <u>road</u> <u>locations</u>?

How well do <u>CTMs</u> and <u>satellites</u> capture the changes over time and space?

ROADINESS: a road proximity metric

Step 1: Download USGS's road link networkStep 2: Overlay grid and sum road lengths in each cellStep 3: Roadiness based on inverse distance weighting

$$Roadiness_{D,i} = \sum_{j=1}^{J} \frac{RoadLength_{j}}{d_{i,j}^{D}}$$

Scaled to Z score

Observation, CMAQ and satellite datasets

Source	Description	Pollu	tants	Years	Citation
Observations	Monitors	NO ₂	O₂ NO_x 1980-2019 EPA Air Out		FPA Air Quality System
Obscivations		СО	EC	EC	
CMAO	36 km	NO ₂	NO _x	1990-2010	Astitha et al. 2017
CINIAQ	12 km	СО	EC	2002-2014	CMAS Center 2020
	OMI	NO ₂		2005-2019	Boersma, 2018
Satellite	Merged	NO ₂		1997-2016	Georgoulias et al. 2019
	MOPITT	СО		2001-2018	Deeter et al. 2003

NO₂ concentrations with road proximity

Low

- Large decreases over 20 years
- Strong relationships with road proximity

CO concentrations with Roadiness

relationships with road proximity than

Hierarchical model: trends in time and space Meteorology

 $C_{kt}^{G} = \beta_{0}^{G}G_{g} + \beta_{R}^{G}R_{k}G_{g} + (\beta_{1}^{G} + \beta_{2}^{G}R_{k})t^{G}G_{g} + \beta_{M}^{G}M_{kt}^{G}G_{g} + U_{k} + S_{kt}$ *k*: monitors *t*: time $U_{k} \sim N(0, \tau_{0}^{2}) \quad \text{Monitor-specific random intercept}$ $S_{kt} \sim N(0, \sigma^{2}) \quad \text{Random (measurement) error}$

- β_0^G : Average concentration at time t = 0
- β_R^G : Concentration-*sRoadiness*₂ relationship at t = 0
- β_1^G : Concentration-time relationship
- β_2^G : Concentration-time interaction with $sRoadiness_2$
- G_g : decade or state group

Observed NO₂ decreased over time and flattened over space

Observed CO decreased over time and flattened over space (1980-2019)

CMAQ products estimate NO_x trends well

- Coefficients as percent of 2002-2010 mean (dynamic evaluation)
- All models adequately capture relationship with *sRoadiness*₂
- Both 12km and 36km CMAQ estimate trends well
- OMI overly sensitive to temporal trend
- Satellites overly sensitive to *sRoadiness*₂-time interaction

How have trends varied in states that did(n't) adopt California's automobile rules?

- EPA allows states to opt into California's automobile emissions rules
- Three rules considered:
 - Light-duty criteria pollutant
 - Light-duty greenhouse gas
 - Zero emissions vehicle rules
- Three state groups; 2010-2019
 - California
 - "Yes" states adopted California standards
 - "No" states followed national standards

State	Model year
New York	1993
Massachusetts	1995
Vermont	2000
Maine	2001
Pennsylvania	2001
Connecticut	2008
Rhode Island	2008
New Jersey	2009
Oregon	2009
Washington	2009
Maryland	2011

Observed NO₂ trends in California, Yes, and No states (2010-2019)

Conclusions

- Distance⁻² maintains strongest relationship with observed concentrations through study period
- TRAP concentrations have flattened in time and space since 1980
 - Declines fastest in areas near roads
 - Continued flattening in recent years
- CMAQ (12km and 36km) captures NO₂ trends across 2002-2010
- Satellite products overly sensitive to NO₂ decreases near roads
- All states saw NO₂ improvements from 2010-2019
 - California had the strongest relationships between road proximity and improvements
 - "Yes" states saw improvements, but no faster near roads than "No" states

Thank you

