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Scope and Objectives

SCOPE: Use multi-media modeling and machine learning (ML)
to assess algal blooms

1. Developed a ML-based methodology that integrated modeled and 
observed data to: 
• Identify and evaluate important environmental parameters
• Predict chlor-α

2. Examine the sensitivity of the model by varying input modeled data 
(meteorological, air quality, hydrological, and agricultural) through 
sensitivity tests

MERIS Sensor, European Space Agency (ESA) Envisat, 2011 2



MODEL DATA: Observed Variable

United States part of Lake Erie (2002-2012) 

• In-situ chlor-𝛼 measurements provided by: 
• Lake Erie Committee Forage Task Group (LEC FTG)

• Chlor-α measurements are seasonally averaged (May to September)
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MODEL DATA: Modeled Variables

Lake Water Quality Assessment and Prediction

Machine Learning Model
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MODEL DATA: Modeled Variables

Explanatory Variables Units Model
Latitude (static variable) degrees (°)

Longitude (static variable) degrees (°)

Max_Radiation (Point) W/m2 WRF

Tmax (Point) ℃ WRF

Tmax_Days_Above_25 (Point) days WRF

Precipitation (WS) mm WRF

Avg_Wind (Point) m/s WRF

Dry_Oxidized_ND (WS) g/ha CMAQ

Dry_Reduced_ND (WS) g/ha CMAQ

Wet_Oxidized_ND (WS) g/ha CMAQ

Wet_Reduced_ND (WS) g/ha CMAQ

Wet_Organic_ND (WS) g/ha CMAQ

Evaporation (Point) kg/m2 VIC

Water Flow (WS) cfs VIC

Soil moisture Layer 1 (0-10 cm) (Point) kg/m2 VIC

Soil moisture Layer 2 (10-40 cm) (Point) kg/m2 VIC

Soil moisture Layer 3 (40-150 cm) (Point) kg/m2 VIC

Water_Temp_C (Point) ℃ VIC

Water_Temp_Days_Above_25 (Point) days VIC

Layer1 N-NO3 (Nitrate) Application Rate (WS) tons EPIC

Layer1 N-NH3 (Ammonia) Application Rate (WS) tons EPIC

Layer1 ON (Organic N) Application Rate (WS) tons EPIC

Layer1 MP (Mineralized P) Application Rate (WS) tons EPIC

Layer1 OP (Organic P) Application Rate (WS) tons EPIC

Layer2 N-NO3 (Nitrate) Application Rate (WS) tons EPIC

Layer2 N-NH3 (Ammonia) Application Rate (WS) tons EPIC

Layer2 ON (Organic N) Application Rate (WS) tons EPIC

Layer2 MP (Mineralized P) Application Rate (WS) tons EPIC

Layer2 OP (Organic P) Application Rate (WS) tons EPIC

29 variables evaluated

3 types of variables
➢ Static – indicate location of 

measurement in lake
➢ Point – paired to the closest 

model grid point to each chlor-α 
station 

➢ Watershed (WS) – aggregated 
daily values for all grids in the 
HUC-8 watershed draining into 
the lake
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METHODOLOGY

• Step 1: Train and validate the random forest (RF) model with all explanatory 
variables.

• Step 2: Examine performance of RF model through 10-fold CV and evaluate 
importance of top explanatory variables through accumulated local effect 
(ALE) plots. 

• Step 3: Evaluate the influence of each set of parameters through sensitivity 
tests by varying EPIC, VIC, WRF, and CMAQ inputs into the RF model.

Simplified RF Diagram
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Results: Prediction of chlor-α

• 65% of variance in chlor-𝛼 measurements is explained by the RF 
model

• 94.8% of the model’s predictions are within a factor of 2 of the obs

Contingency Table

Eutrophic Threshold: 
Chlor-α > 5μg/L

Prediction of Chlor-a

• Eutrophic conditions are identified 73.7% of the time
• Detection of eutrophic vs. non-eutrophic conditions is 87.5% 

Chlor-α >5 μg/L OBSERVATIONS
YES NO

M
O

D
EL

YES 14 7

NO 5 70

Total points = 96

PC = 87.5%

POD1 (Chlor-α>5 μg/L) = 73.7%

POD2 (Chlor-α≤5 μg/L) = 90.9%
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Results: Variable Importance

Variables (29)

VIC

CMAQ

Static

EPIC

WRF
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Discussion: Variable Effects

• Higher chlor-α concentrations from west to east of the lake (FTG LEC, 2019)

• An increase in precipitation leads to an increase in chlor-α
• Precipitation and river discharge increase nutrient loads delivered to the lake (Stow et al., 2015; EPA 

GLNPO U.S. Action Plan For Lake Erie, 2018)

Accumulated Local Effect (ALE) Plots
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WRF and Static

Discussion: Sensitivity Tests

• Spatial variables latitude and longitude are significantly important

Chlor-α >5 μg/L OBSERVATIONS
YES NO

M
O

D
EL

YES 10 4

NO 9 73

Total points = 96

PC = 86.5%

POD1 (Chlor-α>5 μg/L) = 52.6%

POD2 (Chlor-α≤5 μg/L) = 94.8%
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WRF Only

Chlor-α >5 μg/L OBSERVATIONS
YES NO

M
O

D
EL

YES 9 3

NO 10 74

Total points = 96

PC = 86.5%

POD1 (Chlor-α>5 μg/L) = 47.4%

POD2 (Chlor-α≤5 μg/L) = 96.1%



WRF and Static

Discussion: Sensitivity Tests
EPIC and Static

Chlor-α >5 μg/L OBSERVATIONS

YES NO

M
O

D
EL

YES 14 6

NO 5 71

Total points = 96

PC = 88.5%

POD1 (Chlor-α>5 μg/L) = 73.7%

POD2 (Chlor-α≤5 μg/L) = 92.2%

Chlor-α >5 μg/L OBSERVATIONS
YES NO

M
O

D
EL

YES 10 4

NO 9 73

Total points = 96

PC = 86.5%

POD1 (Chlor-α>5 μg/L) = 52.6%

POD2 (Chlor-α≤5 μg/L) = 94.8%
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• Meteorological variables alone perform poorly for predicting high chlor-α values
• Fertilizer application variables are influential for predicting high chlor-α values

• Accelerated eutrophication from human activities links to harmful algal blooms (Watson et al., 2016; 
Anderson et al. 2002) 

• Joint efforts from the U.S. and Canada to reduce P loadings (Canada-Ontario Lake Erie Action Plan, 2018)



Limitations

• Lack of high chlor-α observations for the RF model to train on 

• No lake hydrodynamic information (e.g., lake thermal structure, water 
motions) 

• Wastewater discharges from industrial and municipal sources were not 
included

• No information on the Canadian portion of Lake Erie (US contributes to 
84% of total P loads to Lake Erie) (Canada-Ontario Lake Erie, 2018)
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SUMMARY and FUTURE WORK

• The model has been improved with updated versions of VIC, WRF, and EPIC

• Results are promising but more quantitative assessment is necessary

• The model ranked 29 influential variables conducive to a successful prediction 
of chlor-𝛼: (1) N and P fertilizer applications, (2) location, (3) meteorology, 
hydrology, and air quality

• Expand study period from 11-years (2002-2012) to 16-years (2002-2017) with 
new CMAQ simulations 

• Try different machine learning approaches

• Given sufficient record of data, the predictive tool can be applied to other 
lakes and coastal locations to study other water quality indicators

• Build a predictive tool capable of providing water quality forecasts 
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