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Background

Transportation centers such as airports, railyards, highways, and ports are a
W significant source of air pollutants, pollutants associated with a myriad of adverse
health outcomes.?!

Transportation sources tend to be near other primary air pollution sources like
warehouses, industrial facilities, and commercial operations.

,,ii;f In the United States, ~45 million people reside near primary transportation
: sources. 2
1HEI, 2010

2 United States Census Bureau, 2007



ﬁ UNC INSTITUTE FOR
il THE ENVIRONMENT

Motivation

* Urban fine-scale
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Fine-scale dispersion modeling 3 i B : ENROLE T |
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combined with fixed and mobile . DD 2 1uuune
observations were used to £ NS h‘; o -
characterize annual air quality '
and identify hot spots in Kansas
City.?

Turner et al., 2009

2|sakov et al., 2019
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* Expand Isakov et al., 2019 in Kansas City.

* Increase spatial representation of mobile
monitors

* Explore finer temporal scales
* Improve emission characterization

e Establish a method to adjust emissions and
identify underrepresented sources using

ObjeCtiVeS stationary and mobile measurements

* Improve dispersion modeling predictions

 Compare with unadjusted dispersion
model

 Combine dispersion modeling along with
stationary and mobile measurements using
BME geostatistical data fusion
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Methods et X L A by S e
Field Campaign | PN - el B

Kansas City Transportation and Local- Scale Air #’_ : 5 i i B
Quality Study (KC-TRAQS) Field Campaign ? i - .

e October 24, 2017, to October 31, 2018 i i
. . . : Nt \ s&
* Stationary Monitoring ..l‘ Ere e | i
* Collected site-specific meteorological data Ea "'7'-'-""".', : ,’*5
and Black Carbon (BC) concentrations at 6 E 3 A i S oo e o ::::::...E
sites T s e w0 f,ﬁ;ggli Ly
* Mobile Monitoring . : “,;{L o s i L
* Conducted 2 mobile monitoring campaigns s ; L, EE!? ei
for 31 sampling days (Oct., Nov., Feb., & T T , 3 Sl \ L
Mar.) j T T 69 . ﬂ
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Methods
Dispersion Model

e Utilized algorithms from the Community
Air Quality Tools (C-TOOLS).%?

* |[nput
* Hourly meteorological observations from
the Kansas City Airport

* |sakov et al. developed local-scale emission
inventory for the KC-TRAQS domain?

* Background value based on the annual
average from the Air Quality System (AQS)
site located in Tallgrass Prairie National
Preserve, Kansas

* Output
* Hourly Black Carbon Concentrations

e 75m by 75m grid resolution in 10km by
8km domain

llsakov et al. 2017
2|Isakov et al. 2019
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Methods
Inverse Modeling
Framework

/ ¢

SOuth=181 h==StrEer

* Improve the emission characterization of our most uncertain —_— | ] | O
(area) sources ' —t

* Obtain the adjustment factors by minimizing the sum of the » SR |
residuals €; = Zypsi —Zqaj,i, Where z,p; are stationary and O+ SRR N ‘ =
mobile hourly observations of BC concentration at points i Gl s s L

103 1San 3 3] N0%,
)T 1N

* Implement in a python-based Ordinary Least Squares (OLS)
regression library by defining the following linear regression LE
]

equation:

Zobs,i — by + bWZW,i +bMZM,i +bArgZArg,i +bArmZArm,i + €
where b, is the background concentration \
Z is the initial dispersion concentration, |
b is the adjustment factor for Pl e
the Warehouses Group (W), @©0 0@ »
the Maintenance Facility (M), ®
the Argentine Railyard (Arg), ©
the Armourdale Railyard (Arm)©® @ /

f " [1T] | |
1565/ f \
— (_ 1 g
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Methods
Bayesian Maximum Entropy (BME) Data fusion

Residual X(s) Covariance Modeling
Concentration Fit an exponential covariance model

X(s): Homogeneous Spatial Random Field

representing the variability of x , _
through the experimental covariance

X,=2,-0 values obtained from x
x: Residual Concentration h h h h

z: BC Concentrations
o: Offset Concentration
h: Observed locations
* 6 stationary sites
* Mobile monitoring grids

k: gridded unsampled locations Estimate x, by interpolating x, using
BMEIlib numerical library with:

BME Ordinary Kriging

Observation

* Upper case represents random values and smmnd Corrected Model

lower case represents deterministic (e.q.,

e General knowledge - X(s) constant mean
and covariance

observed) values. * Site-specific knowledge - x, treated as hard
(i.e., exact) data

zk=0k+xk
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Bayesian Maximum Entropy (BME) Data fusion

3 Offsets defined across the space/time domain
* Flat BME

* Constant offset equal to the mean of the observations (No dispersion model)

* DISP BME
* Unadjusted dispersion model (DISP)

* |-DISP BME
* Adjusted dispersion model (I-DISP)



Methods
Cross-validation

Conventional cross-validation
(conventional 10-fold)

e Spatially clustered cross-
validation (clustered 10-fold)

* Spatial 2-fold cross-validation
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Legend

3 Air Quality Zones
[ Area Sources
A Stationary Sites r
‘ Mobile Grid Sites [969] T
® Validation Set1[110] |~ | | |
Validation Set 2 [79] i3 L
Validation Set 3 [126] |
Validation Set4 [61] |
Validation Set5 [66] -
Validation Set 6 [85] |
Validation Set 7 [97]
Validation Set 8 [60]

Validation Set 9 [131] [HElET
Validation Set 10 [154]
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Res u Its Distributions of observed BC concentrations at stationary and

. . at mobile monitoring grids for the 2017/2018 study period.
Field Campaign

_ Site
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Annual BC Concentrations

Results e -
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Inverse Modeling
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Unadjusted (DISP) and adjusted (I-DISP) area source BC emissions with

Latitude

adjustment factors

Area Source DISP Adjustment I-DISP
Emissions  Factor (95% C.I.) Emissions \ BC (ugm)
(tons/year) (tons/year) X )
I Armstrong 0.8400 1.000 0.8400 T \
Associated 0.0032 305.8 0.9786
Wholesale Grocers (244.5,367.1) any
USPS Distribution 0.0012 305.8 0.3669 §
Center (2445,3671) 39.08 jul 7zl
BNSF Maintenance 1.482 0.0818 0.1186 7 iR,
Facility (0.0620,0.1020) o ueterelion s
UPS Freight 0.0005 305.8 0.1525 AR
(244.5,367.1) 3 ;
Sam’s Club 0.0004 305.8 0.1223
Distribution (244.5,367.1)
Estes Express Lines 0.0002 305.8 0.0612
(2445'3671) -94.72 -94. -94.68 9. — 9462
Union Pacific 0.4670 1.000 0.4670 Longitude
Armourdale Yard
Santa Fe Argentine 1.542 0.9187 1.417 Overall, these adjustments in emissions contribute
Yard (0.841,0.996) to a 4% increase of the total area source
emissions.

12
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Results
BME Data Fusion

Monthly Average BC (ug/m3) for October 2017

. ..
05 1

1.5 2 25 3

Flat BME DISP BME

|-DISP BME

39.11

NS YA

T %

39.07

Flat BME lacks elevated
concentrations gradients in the
vicinity of roadways and railyards.

The main differences between DISP and I-DISP

are depicted in the vicinity of the warehouses
and the maintenance facility.

13
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B I\/I E D a t a F u S | O n _Zone 1: Armourdale Neighborhood -

BME improves dispersion model oose
— Fixed BME

1.54 — Flat BME
] — DISP BME
- - I-DISP BME
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Zone 7: Northern Area Sources Route Entire Area

] Variability introduced from dispersion
15] -7 s model -

BC (Lo

3 Air Quality Zones
"] Area Sources o
/\ Stationary Sites ]_
' Mobile Grid Sites [969]
© Validation Set 1 [110] |
= Validation Set2(79] | [[1
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» Validation Set 5 [66]
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Zone 13: American Legion Area

Noticeable improvement between
DISP BME and I-DISP BME
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11/2017 1/2018 3/2018 5/2018 7/2018 9/2018
Date
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Results
Cross-Validation

R? for Cross-Validation Techniques for Monthly Averages.

DISP I-DISP Cross-Validation DISP BME  |-DISP BME
(R?) (R?) Method Flat BME (R%) (R?) (R?)
2-Fold 0.001 0.063 0.092
Clustered 0.107 0.150 0.169
0.070 0109 |poFfOld |
Conventional 0.798 0.786 0.787
10-Fold

Emission adjustments improved R2 2-fold cross-validation shows an increase 10-fold conventional cross-validation
values by up to 56% from DISP to of a factor of 90 for I-DISP when shows that all BME methods have a
I-DIPS. compared to Flat. R2 of ~0.80.

15
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* Used a combination of dispersion modeling, fixed and
mobile measurements from KC-TRAQS with data fusion
methods to characterize air quality

* Applied emissions adjustments through Inverse Modeling

* Improved emissions inputs for dispersion modeling
applications

* Applied BME data fusion to create monthly spatial maps of
air pollutant concentrations

* Identify hot spots in the study area
* |dentify contributions from local air pollution sources

* Cross-validation analysis shows model performance
improvement when applying inverse modeling and BME data
fusion

16
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Future Work

* Address non-Gaussian uncertainty associated with
measurements taken from mobile monitors due to
temporal sparsity

* Use BME soft data capability to assign uncertainty to
mobile measurements

* Address non-Gaussian uncertainty associated with
the dispersion model
* Use the Constant Air quality Model Performance

(CAMP) approach to account for the non-linear and
non-homoscedastic behavior of the model

* Implement BME data fusion at time scales finer
than monthly concentration averages

17
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