

19th ANNUAL CMAS Conference

Oct. 26-30 | Virtual

Improving emissions inputs via mobile measurements to estimate fine-scale Black Carbon concentrations through geostatistical data fusion

Alejandro Valencia¹, Saravanan Arunachalam³, Vlad Isakov², Brian Naess³, and Marc Serre¹

¹Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill

²Office of Research and Development, U.S. EPA

³ Institute for the Environment, University of North Carolina at Chapel Hill

Background

Transportation centers such as airports, railyards, highways, and ports are a significant source of air pollutants, pollutants associated with a myriad of adverse health outcomes.¹

Transportation sources tend to be near other primary air pollution sources like warehouses, industrial facilities, and commercial operations.

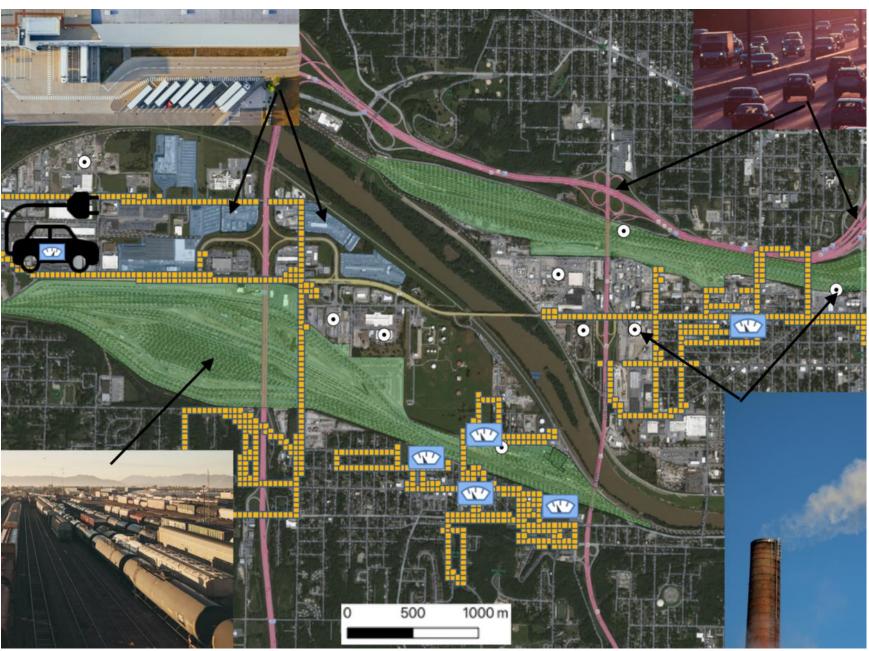
In the United States, ~45 million people reside near primary transportation sources. 2

¹ HEI, 2010 ² United States Census Bureau, 2007

Motivation

- Urban fine-scale characterization of air quality is vital for developing effective air pollution control strategies
- Isolating sources and quantifying their contribution is challenging in complex transportation environments¹
 - Spatially sparse fixed observations
- Fine-scale dispersion modeling combined with fixed and mobile observations were used to characterize annual air quality and identify hot spots in Kansas City.²

¹Turner et al., 2009 ²Isakov et al., 2019



Objectives

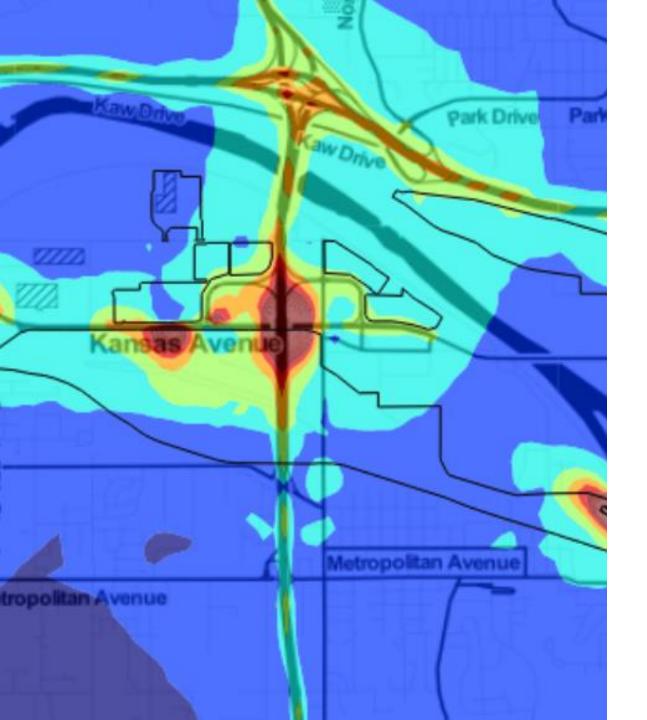
- Expand Isakov et al., 2019 in Kansas City.
 - Increase spatial representation of mobile monitors
 - Explore finer temporal scales
 - Improve emission characterization
- Establish a method to adjust emissions and identify underrepresented sources using stationary and mobile measurements
 - Improve dispersion modeling predictions
 - Compare with unadjusted dispersion model
- Combine dispersion modeling along with stationary and mobile measurements using BME geostatistical data fusion

Methods Field Campaign

Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) Field Campaign ¹

- October 24, 2017, to October 31, 2018
- Stationary Monitoring
 - Collected site-specific meteorological data and Black Carbon (BC) concentrations at 6 sites
- Mobile Monitoring
 - Conducted 2 mobile monitoring campaigns for 31 sampling days (Oct., Nov., Feb., & Mar.)
 - 6-10 hours of continuous sampling each day
 - Vehicle drove 15 to 20 laps along the same route
 - Gridded to 40x40 m resolution

¹Kimbrough et al, 2019



Methods Dispersion Model

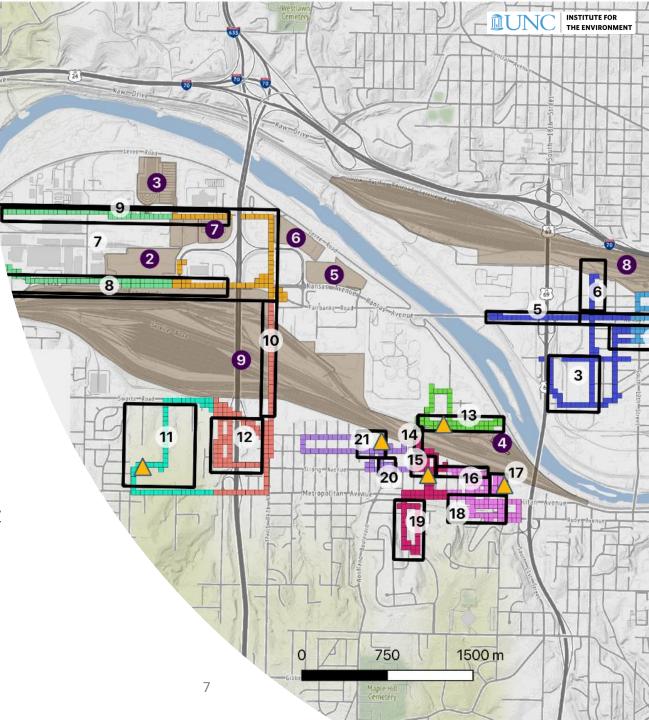
- Utilized algorithms from the Community Air Quality Tools (C-TOOLS).^{1,2}
- Input
 - Hourly meteorological observations from the Kansas City Airport
 - Isakov et al. developed local-scale emission inventory for the KC-TRAQS domain²
 - Background value based on the annual average from the Air Quality System (AQS) site located in Tallgrass Prairie National Preserve, Kansas
- Output
 - Hourly Black Carbon Concentrations
 - 75m by 75m grid resolution in 10km by 8km domain

¹Isakov et al. 2017 ²Isakov et al. 2019 INSTITUTE FOR

Methods Inverse Modeling Framework

- Improve the emission characterization of our most uncertain (area) sources
- Obtain the adjustment factors by minimizing the sum of the residuals $\epsilon_i = z_{obs,i} z_{adj,i}$, where $z_{obs,i}$ are stationary and mobile hourly observations of BC concentration at points i
- Implement in a python-based Ordinary Least Squares (OLS) regression library by defining the following linear regression equation:

 $\begin{aligned} z_{obs,i} &= b_0 + b_W z_{W,i} + b_M z_{M,i} + b_{Arg} z_{Arg,i} + b_{Arm} z_{Arm,i} + \in_i \\ & \text{where } b_0 \text{ is the background concentration} \\ z \text{ is the initial dispersion concentration,} \\ b \text{ is the adjustment factor for} \\ & \text{the Warehouses Group } (W), 23567 \\ & \text{the Maintenance Facility } (M), 4 \\ & \text{the Argentine Railyard } (Arg), 9 \\ & \text{the Armourdale Railyard } (Arm) 31 \end{aligned}$



Methods Bayesian Maximum Entropy (BME) Data fusion

X(s): Homogeneous Spatial Random Field representing the variability of *x*

x: Residual Concentrationz: BC Concentrationso: Offset Concentrationh: Observed locations

- 6 stationary sites
- Mobile monitoring grids
 k: gridded unsampled locations

* Upper case represents random values and lower case represents deterministic (e.g., observed) values. Residual Concentration

 $x_h = z_h - o_h$

X(s) Covariance Modeling

Fit an exponential covariance model through the experimental covariance values obtained from x_h

BME Ordinary Kriging

Estimate $\mathbf{x}_{\mathbf{k}}$ by interpolating $\mathbf{x}_{\mathbf{h}}$ using **BMElib** numerical library with:

- General knowledge *X(s)* constant mean and covariance
- Site-specific knowledge x_h treated as hard (i.e., exact) data

Observation Corrected Model $z_k = o_k + x_k$

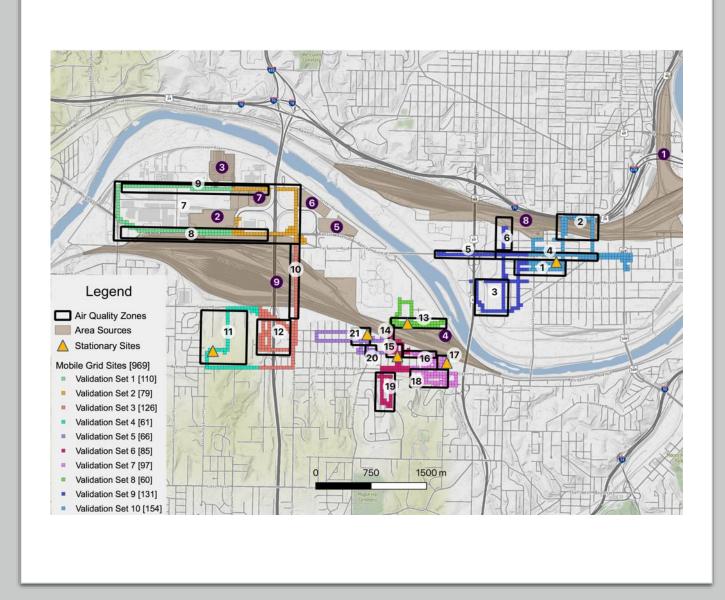
Methods

Bayesian Maximum Entropy (BME) Data fusion

- 3 Offsets defined across the space/time domain
 - Flat BME
 - Constant offset equal to the mean of the observations (No dispersion model)
 - DISP BME
 - Unadjusted dispersion model (DISP)
 - I-DISP BME
 - Adjusted dispersion model (I-DISP)

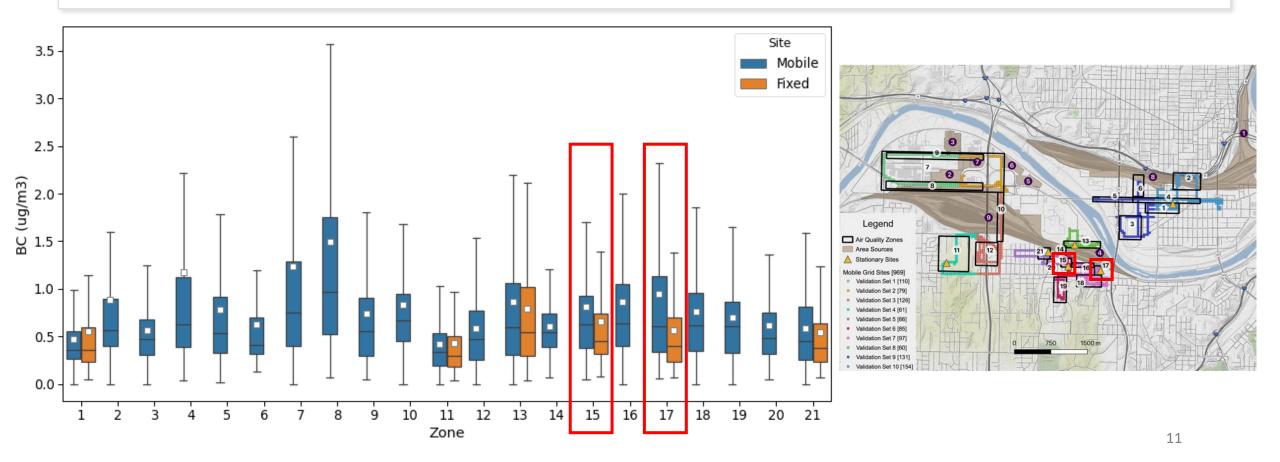
Methods Cross-validation

- Conventional cross-validation (conventional 10-fold)
- Spatially clustered crossvalidation (clustered 10-fold)
- Spatial 2-fold cross-validation



Results Field Campaign

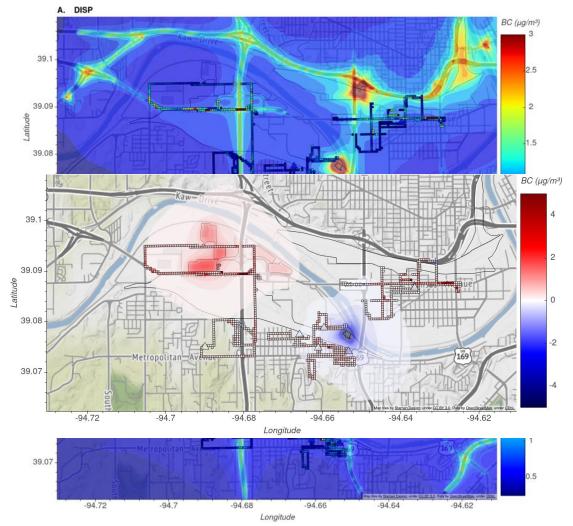
Distributions of observed BC concentrations at stationary and at mobile monitoring grids for the 2017/2018 study period.



Results Inverse Modeling

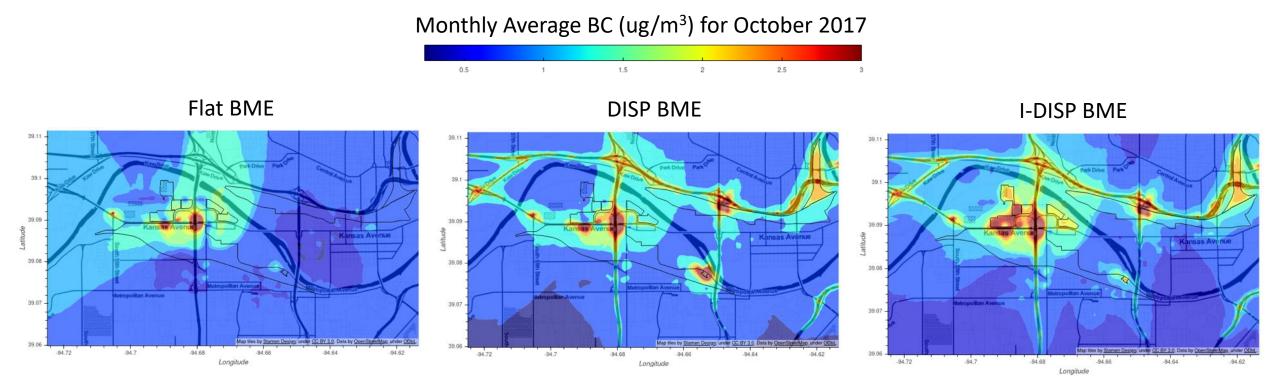
Unadjusted (DISP) and adjusted (I-DISP) area source BC emissions with adjustment factors								
Area Number	Area Source	DISP Emissions (tons/year)	Adjustment Factor (95% C.I.)	I-DISP Emissions (tons/year)				
1	Armstrong	0.8400	1.000	0.8400				
2	Associated Wholesale Grocers	0.0032	305.8 (244.5,367.1)	0.9786				
3	USPS Distribution Center	0.0012	305.8 (244.5,367.1)	0.3669				
4	BNSF Maintenance Facility	1.482	0.0818 (0.0620,0.1020)	0.1186				
5	UPS Freight	0.0005	305.8 (244.5,367.1)	0.1525				
6	Sam's Club Distribution	0.0004	305.8 (244.5,367.1)	0.1223				
7	Estes Express Lines	0.0002	305.8 (244.5,367.1)	0.0612				
8	Union Pacific Armourdale Yard	0.4670	1.000	0.4670				
9	Santa Fe Argentine Yard	1.542	0.9187 (0.841,0.996)	1.417				

Annual BC Concentrations



Overall, these adjustments in emissions contribute to a 4% increase of the total area source emissions.

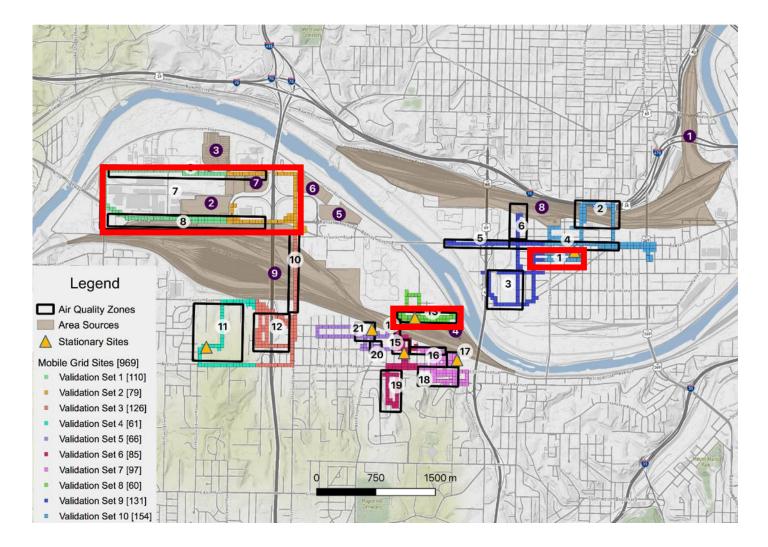
Results BME Data Fusion

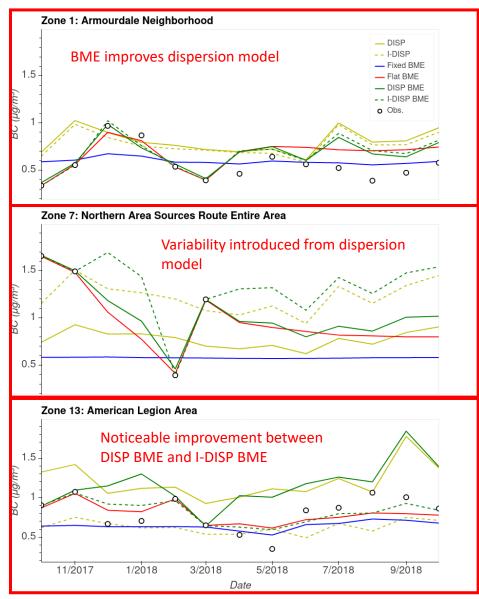


Flat BME lacks elevated concentrations gradients in the vicinity of roadways and railyards.

The main differences between DISP and I-DISP are depicted in the vicinity of the warehouses and the maintenance facility.

Results BME Data Fusion





Results Cross-Validation

R ² for Cross-Validation Techniques for Monthly Averages.									
	DISP (R ²)	I-DISP (R ²)	Cross-Validation Method	Flat BME (R ²)	DISP BME (R ²)	I-DISP BME (R ²)			
	0.070	0.109	2-Fold	0.001	0.063	0.092			
BC Monthly			Clustered 10-Fold	0.107	0.150	0.169			
Average			Conventional 10-Fold	0.798	0.786	0.787			

Emission adjustments improved R² values by up to 56% from DISP to I-DIPS.

2-fold cross-validation shows an increase of a factor of 90 for I-DISP when compared to Flat. 10-fold conventional cross-validation shows that all BME methods have a R^2 of ~0.80.



Conclusion

- Used a combination of dispersion modeling, fixed and mobile measurements from KC-TRAQS with data fusion methods to characterize air quality
- Applied emissions adjustments through Inverse Modeling
 - Improved emissions inputs for dispersion modeling applications
- Applied BME data fusion to create monthly spatial maps of air pollutant concentrations
 - Identify hot spots in the study area
 - Identify contributions from local air pollution sources
- Cross-validation analysis shows model performance improvement when applying inverse modeling and BME data fusion

Future Work

- Address non-Gaussian uncertainty associated with measurements taken from mobile monitors due to temporal sparsity
 - Use BME soft data capability to assign uncertainty to mobile measurements
- Address non-Gaussian uncertainty associated with the dispersion model
 - Use the Constant Air quality Model Performance (CAMP) approach to account for the non-linear and non-homoscedastic behavior of the model
- Implement BME data fusion at time scales finer than monthly concentration averages

Acknowledgment

• The U.S. EPA, through its Office of Research and Development, partially funded and collaborated in the research described here under Contract EP-W-16-014 to the Institute for the Environment at the University of North Carolina at Chapel Hill.

References

- HEI. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects.; 2010.
- U.S. Census Bureau. American Housing Survey for the United States : 2007. *Curr. Hous. Reports* 2007.
- Isakov, V.; Arunachalam, S.; Baldauf, R.; Breen, M.; Deshmukh, P.; Hawkins, A.; Kimbrough, S.; Krabbe, S.; Naess, B.; Serre, M.; Valencia, A. Combining Dispersion Modeling and Monitoring Data for Community-Scale Air Quality Characterization. *Atmosphere (Basel)*. 2019, 10 (10), 610. https://doi.org/10.3390/atmos10100610.
- Isakov, V.; Barzyk, T.; Arunachalam, S.; Naess, B.; Seppanen, C.; Monteiro, A.; Sorte, S. Web-Based Air Quality Screening Tool for near-Port Assessments: Example of Application in Porto, Portugal. In HARMO 2017 - 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Proceedings; Hungarian Meteorological Service, 2017; Vol. 2017-Octob, pp 258–262. https://doi.org/10.1016/j.envsoft.2017.09.004.
- Kimbrough, S.; Krabbe, S.; Baldauf, R.; Barzyk, T.; Brown, M.; Brown, S.; Croghan, C.; Davis, M.; Deshmukh, P.; Duvall, R.; Feinberg, S.; Isakov, V.; Logan, R.; McArthur, T.; Shields, A. The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project. *Chemosensors* 2019, 7 (2), 26. https://doi.org/10.3390/chemosensors7020026.