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Improving emissions inputs via mobile 
measurements to estimate fine-scale 
Black Carbon concentrations through 

geostatistical data fusion



Background

Transportation centers such as airports, railyards, highways, and ports are a 
significant source of air pollutants, pollutants associated with a myriad of adverse 
health outcomes. 1

Transportation sources tend to be near other primary air pollution sources like 
warehouses, industrial facilities, and commercial operations.

In the United States, ~45 million people reside near primary transportation 
sources. 2

1 HEI, 2010
2 United States Census Bureau, 2007 2



Motivation
• Urban fine-scale 

characterization of air quality is 
vital for developing effective air 
pollution control strategies

• Isolating sources and 
quantifying their contribution is 
challenging in complex 
transportation environments1

• Spatially sparse fixed observations

• Fine-scale dispersion modeling 
combined with fixed and mobile 
observations were used to 
characterize annual air quality 
and identify hot spots in Kansas 
City.2
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1Turner et al., 2009
2Isakov et al., 2019 



Objectives

• Expand Isakov et al., 2019 in Kansas City.
• Increase spatial representation of mobile 

monitors
• Explore finer temporal scales
• Improve emission characterization

• Establish a method to adjust emissions and 
identify underrepresented sources using 
stationary and mobile measurements
• Improve dispersion modeling predictions
• Compare with unadjusted dispersion 

model

• Combine dispersion modeling along with 
stationary and mobile measurements using 
BME geostatistical data fusion
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Methods
Field Campaign

Kansas City Transportation and Local-Scale Air 
Quality Study (KC-TRAQS) Field Campaign 1

• October 24, 2017, to October 31, 2018

• Stationary Monitoring
• Collected site-specific meteorological data 

and Black Carbon (BC) concentrations at 6 
sites 

• Mobile Monitoring
• Conducted 2 mobile monitoring campaigns 

for 31 sampling days (Oct., Nov., Feb., & 
Mar.)

• 6-10 hours of continuous sampling each 
day

• Vehicle drove 15 to 20 laps along the same 
route

• Gridded to 40x40 m resolution

51Kimbrough et al, 2019



Methods
Dispersion Model

• Utilized algorithms from the Community 
Air Quality Tools (C-TOOLS).1,2

• Input
• Hourly meteorological observations from 

the Kansas City Airport 
• Isakov et al. developed local-scale emission 

inventory for the KC-TRAQS domain2

• Background value based on the annual 
average from the Air Quality System (AQS) 
site located in Tallgrass Prairie National 
Preserve, Kansas

• Output
• Hourly Black Carbon Concentrations
• 75m by 75m grid resolution in 10km by 

8km domain
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1Isakov et al. 2017
2Isakov et al. 2019



Methods
Inverse Modeling 
Framework

• Improve the emission characterization of our most uncertain 
(area) sources

• Obtain the adjustment factors by minimizing the sum of the 
residuals 𝜖𝑖 = 𝑧𝑜𝑏𝑠,𝑖 −𝑧𝑎𝑑𝑗,𝑖, where 𝑧𝑜𝑏𝑠,𝑖 are stationary and 
mobile hourly observations of BC concentration at points 𝑖

• Implement in a python-based Ordinary Least Squares (OLS) 
regression library by defining the following linear regression 
equation:
𝑧𝑜𝑏𝑠,𝑖 = 𝑏0 + 𝑏𝑊𝑧𝑊,𝑖 +𝑏𝑀𝑧𝑀,𝑖 +𝑏𝐴𝑟𝑔𝑧𝐴𝑟𝑔,𝑖 +𝑏𝐴𝑟𝑚𝑧𝐴𝑟𝑚,𝑖 + ∈𝑖

where 𝑏0 is the background concentration
𝑧 is the initial dispersion concentration,
𝑏 is the adjustment factor for
the Warehouses Group (𝑊), 
the Maintenance Facility (𝑀), 
the Argentine Railyard (𝐴𝑟𝑔), 
the Armourdale Railyard (𝐴𝑟𝑚) 7
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Residual 
Concentration 

xh = zh − oh

X(s) Covariance Modeling

Fit an exponential covariance model 
through the experimental covariance 
values obtained from xh

BME Ordinary Kriging

Estimate xk by interpolating xh using 
BMElib numerical library with:

• General knowledge - X(s) constant mean 
and covariance

• Site-specific knowledge - xh treated as hard 
(i.e., exact) data

Observation 

Corrected Model

zk = ok + xk

Methods
Bayesian Maximum Entropy (BME) Data fusion

X(s): Homogeneous Spatial Random Field 
representing the variability of x

x: Residual Concentration
z: BC Concentrations 
o: Offset Concentration
h: Observed locations 

• 6 stationary sites 
• Mobile monitoring grids

k: gridded unsampled locations

* Upper case represents random values and 
lower case represents deterministic (e.g., 
observed) values.



Methods
Bayesian Maximum Entropy (BME) Data fusion

• 3 Offsets defined across the space/time domain
• Flat BME

• Constant offset equal to the mean of the observations (No dispersion model)

• DISP BME
• Unadjusted dispersion model (DISP)

• I-DISP BME
• Adjusted dispersion model (I-DISP)

9



Methods 
Cross-validation

• Conventional cross-validation 
(conventional 10-fold)

• Spatially clustered cross-
validation (clustered 10-fold)

• Spatial 2-fold cross-validation
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Results
Field Campaign 

Distributions of observed BC concentrations at stationary and 
at mobile monitoring grids for the 2017/2018 study period. 
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Annual BC Concentrations

Unadjusted (DISP) and adjusted (I-DISP) area source BC emissions with 
adjustment factors

Area 
Number

Area Source DISP
Emissions 

(tons/year)

Adjustment 
Factor (95% C.I.)

I-DISP 
Emissions

(tons/year)
1 Armstrong 0.8400 1.000 0.8400
2 Associated 

Wholesale Grocers
0.0032 305.8 

(244.5,367.1)
0.9786

3 USPS Distribution 
Center

0.0012 305.8 
(244.5,367.1)

0.3669

4 BNSF Maintenance 
Facility

1.482 0.0818 
(0.0620,0.1020)

0.1186

5 UPS Freight 0.0005 305.8 
(244.5,367.1)

0.1525

6 Sam’s Club 
Distribution

0.0004 305.8 
(244.5,367.1)

0.1223

7 Estes Express Lines 0.0002 305.8 
(244.5,367.1)

0.0612

8 Union Pacific 
Armourdale Yard

0.4670 1.000 0.4670

9 Santa Fe Argentine 
Yard

1.542 0.9187 
(0.841,0.996)

1.417
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Overall, these adjustments in emissions contribute 
to a 4% increase of the total area source 
emissions.  

Results 
Inverse Modeling



Results 
BME Data Fusion

13

Monthly Average BC (ug/m3) for October 2017

Flat BME lacks elevated 
concentrations gradients in the 
vicinity of roadways and railyards. 

The main differences between DISP and I-DISP 
are depicted in the vicinity of the warehouses 
and the maintenance facility. 

Flat BME DISP BME I-DISP BME
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Results 
BME Data Fusion

Noticeable improvement between 
DISP BME and I-DISP BME

Variability introduced from dispersion 
model

BME improves dispersion model



Results 
Cross-Validation

R2 for Cross-Validation Techniques for Monthly Averages.

DISP
(R2)

I-DISP
(R2)

Cross-Validation
Method

Flat BME (R2)
DISP BME

(R2)
I-DISP BME

(R2)

BC Monthly
Average

0.070 0.109

2-Fold 0.001 0.063 0.092

Clustered 
10-Fold

0.107 0.150 0.169

Conventional
10-Fold

0.798 0.786 0.787
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10-fold conventional cross-validation 
shows that all BME methods have a 
R2 of ~0.80.

2-fold cross-validation shows an increase 

of a factor of 90 for I-DISP when 

compared to Flat.

Emission adjustments improved R2

values by up to 56% from DISP to      
I-DIPS.



Conclusion

• Used a combination of dispersion modeling, fixed and 
mobile measurements from KC-TRAQS with data fusion 
methods to characterize air quality

• Applied emissions adjustments through Inverse Modeling
• Improved emissions inputs for dispersion modeling 

applications

• Applied BME data fusion to create monthly spatial maps of 
air pollutant concentrations
• Identify hot spots in the study area
• Identify contributions from local air pollution sources

• Cross-validation analysis shows model performance 
improvement when applying inverse modeling and BME data 
fusion



Future Work
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• Address non-Gaussian uncertainty associated with 
measurements taken from mobile monitors due to 
temporal sparsity
• Use BME soft data capability to assign uncertainty to 

mobile measurements

• Address non-Gaussian uncertainty associated with 
the dispersion model
• Use the Constant Air quality Model Performance 

(CAMP) approach to account for the non-linear and 
non-homoscedastic behavior of the model

• Implement BME data fusion at time scales finer 
than monthly concentration averages
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