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Burden of Disease
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“ Burden of disease is concept that describes death and 

loss of health due to diseases, injuries and risk factors. ” 
World Health Organization (WHO)

“ Global Burden of Disease (GBD) estimated that 

particulate matter pollution caused 2.94 million deaths during 2017. ” 
(Stanaway et al., 2018)



Burden of Disease

3

IHME, Global Burden of Disease, https://ourworldindata.org/outdoor-air-pollution

Burden of disease = f (Population, Risk, PM2.5 Conc.)



Motivations

 Although GBD considered risk of PM2.5 exposure at national-wide level,

different PM2.5 exposure risks at finer geological scales such as urban and rural

areas had been identified in previous studies. (Garcia et al., 2016; McGuinn et al., 2017)
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Source: Garcia et al., 2016
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Individual 

factors

• PM2.5 compositions

• nitrate, sulfate, ammonium, OC, EC

• diesel particles, heavy metals, dioxin, 

other HAPs

• Exposure duration/frequency

• Exposure intensity

• Daily living pattern

• Land-use characteristics (urban/rural)

• Vulnerability (gender, age, gene)

• Knowledge

• Social-economic status

• Medical accessibility

Factors 

affecting

PM2.5 exposure

risk 
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Uncertainty of BD estimation

 Different sources of risk values and ambient PM2.5 concentration would pose 

uncertainty for burden of disease estimation

– Risk values: USEPA recommended values, nation-specific values, finer-scale values

– Ambient concentration data:  monitoring data, modeled data

 In this study, the uncertainty between different methods to estimate BD should be 

quantified as well.
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Burden of disease = f (Population, Risk, PM2.5 Conc.)



Objectives

 Develop a feasible and generalizable burden of disease estimation approach that 

can consider PM2.5 exposure risks in diverse urbanization levels.

 Quantify the uncertainty of present burden of disease estimation methodology 

with different risk values and PM2.5 exposure data
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Study region
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Taiwan

Taiwan
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City
 Population: 

– about 1.9 millions 

 Area
– about 2,200 km2

 Population density
– 856 people/km2

urban

suburban



Methods

 The burden of disease is retrieved from 

– hospital admission data

– monitoring data

– CMAQ-modeled data

 Spatial resolution: 1 km × 1 km
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– emission data

– land-use data

– population data

Burden of disease 
= f (Population, Risk, PM2.5 Conc.)



Methods

 Hospital admission data (2006-2016)

– 12,524 subjects with cardiovascular diseases (CVDs)

– 37,846 non-accidental deaths

 Air quality monitoring data (4 sites, 2006-2016) 

– averages of 24 hr before admission were calculated 

– PM2.5, PM10, NO, SO2, CO, O3

– ambient temperature, relative humidity, wind speed

 CMAQ-modeled data in 2013

– CMAQ v5.2 / WRF

– Taiwan Emission Data System (TEDS) version 9.0

– CMAQ-modeled data was further fused with 2013 monitoring data
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Methods 

 Urbanization level was defined by Mean Entropy Index (MEI) and PM2.5

emission density 

– MEI represents the diversity and heterogeneity of land-use patterns in each grid

– Equally divided subjects to 3 groups and 3*3=9 categories could be obtained 
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(a) Mean Entropy Index (MEI) (b) PM2.5 emission density 



 Case-crossover study design

– to investigate the relationship between PM2.5 exposure and health outcomes

– used subjects themselves as controls (self-matching) but at different time period

– Conditional logistic regression

 Stratified analysis

– The same regression model was applied to 9 categorized groups

– Different risks (odds ratios, ORs) for each groups could be retrieved 

Case-crossover study design and 

Stratified analysis
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 Burden of disease estimation: concentration-response functions (CRFs)

– quantify the increased hospital admissions due to short-term PM2.5 exposure

 Uncertainty under different scenarios

– Risk parameters (𝛽):

• USEPA recommended risk

• Average risk

• Heterogeneously distributed risks

– Daily exposure data (𝐂):

• Monitoring data

• CMAQ-fused data 

𝐘 = 𝐄𝟎 × 𝐏𝐨𝐩 × 1 − e−𝛽× 𝐂−𝐂𝟎 × 𝐀

Uncertainty analysis
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𝐅𝐮𝐬𝐞𝐝 𝐏𝐌𝟐.𝟓𝑑,𝑔
=
𝐎𝐛𝐬𝐞𝐯𝐞𝐝 𝐏𝐌𝟐.𝟓𝑑,𝑠

𝐌𝐨𝐝𝐞𝐥𝐞𝐝 𝐏𝐌𝟐.𝟓𝑑,𝑠

×𝐌𝐨𝐝𝐞𝐥𝐞𝐝 𝐏𝐌𝟐.𝟓𝑑,𝑔



Results
 Overall risks (ORs) was 

– 1.25 (95% CI: 1.22-1.27) for death

– 1.27 (95% CI: 1.24-1.30) for CVDs

 The risks varied with MEI levels and neighboring PM2.5 emission densities. With 

the same PM2.5 exposure level

– living in low MEI areas would have high risk of death

– living in high MEI areas would have high risk of CVDs

– neighboring to medium-level PM2.5 emission density would have higher risk.
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(a) Death (b) Cardiovascular Disease



Results – Risk Map
 When applying categorized risks to the map, 

– Death: higher risk in urban and rural, lower in suburban

– CVDs: higher in urban and suburban, lower in rural

 Different patterns for death and CVDs implied the importance of medical 

accessibility

– CVD patients in urban could seek medical treatment more easily to avoid death
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(a) Death (b) Cardiovascular Disease



Results – Risk Map
 Rural: “non-metropolitan penalty”

– lower accessibility of medical resources

– financial consideration

– individual knowledge and awareness

– frequent outdoor activities
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(a) Death (b) Cardiovascular Disease

 Urban

– high accessibility of medical resources

– higher awareness

– higher social-economic status

– higher PM2.5 at breathing level



Uncertainty Analysis
 To illustrate the spatial difference, use CVD admissions map as an example
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Burden of disease = f (Population, Risk, PM2.5 Conc.)



Uncertainty Analysis

 Using monitoring data would underestimate 2013 hospital admissions by 20%-

32% compared with CMAQ-fused data.

 Compared with using gridded risk

– Using USEPA recommended risk would largely underestimate by 23%-86% 

– Using averaged local risk would overestimate by 0%-38%
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Scenario Applied Risk
N (%)

Monitoring data CMAQ-Fused data Difference

Death

Gridded Local Risk 1.000 - 1.742 1,699 (100%) 2,137 (100%) -437 (-20%)

Averaged Local Risk 1.245 1,698 (100%) 2,266 (106%) -568 (-25%)

USEPA Recommended Risk 1.170 1,309 (77%) 1,790 (84%) -481 (-27%)

Cardiovascular Disease

Gridded Local Risk 1.000 - 1.992 1,297 (100%) 1,750 (100%) -453 (-26%)

Averaged Local Risk 1.266 1,790 (138%) 2,375 (136%) -585 (-25%)

USEPA Recommended Risk 1.002 178 (14%) 262 (15%) -85 (-32%)



Uncertainty Analysis
 Compared with using gridded-risks, using averaged risks would 

– Death: underestimate in rural and overestimate in suburban and urban

– CVD: underestimate in urban and suburban and overestimate in rural

19

(a) Death (b) Cardiovascular Disease



Conclusions

 The heterogeneity of land-use patterns (MEI) and neighboring emission would 

affect the vulnerability of PM2.5 short-term exposure, and the spatial distribution 

depend on health outcomes

– The higher death risk occurs in rural but the higher CVD risk occurs in urban

 The burden of disease estimation would be largely biased by risk parameters and 

PM2.5 exposure data.

– Using monitoring data and ignoring the spatial heterogeneity of risks could have a 

considerable bias (-32% ~ 85%)

 Our evaluation methodology could be generalized to any city or country. Cities 

or countries without appropriate risk estimates could utilize our approach to 

develop their own burden of disease estimation.
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Thanks for your attention!

Q&A
cmasconference2020@unc.edu
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