

Implementing satellite NO₂ data assimilation in CMAQ for identifying emissions biases and improving regional boundary conditions

James East^{1,2}, Barron Henderson³, Shannon Koplitz³, Sergey Napelenok³, Fernando Garcia Menendez², Allen Lenzen⁴, Brad Pierce⁴

ORISE Fellow at US EPA
NC State University
US EPA
University of Wisconsin Space Science and Engineering Center

2020 CMAS Conference, Virtual

Motivating Satellite NO₂ Data Assimilation

- How can we use fused CMAQ + satellite NO₂ estimates to QA or improve emissions?
 - Improved boundary conditions for regional air quality simulations
 - Constraints on international emissions
 - Fast first-pass estimates of NO_x emissions in response to unexpected emissions changes
 - NO_x emissions from some sources with uncertainty, such as soil NO_x

Today's results summarize:

- OMI NO₂ retrievals (Ω)
- CMAQ *a priori* VCD performance (Ω_{CMAQ})
- CMAQ VCD Sensitivity (^β)
- Assimilation increment ($\Delta\Omega$)
- Emissions inference (ΔE)

Chemical data assimilation in CMAQ

- HAQAST implemented OMI NO₂ satellite assimilation.
 - Assimilation has been used in meteorology for a long time.
 - HAQAST applied the same tools updated to satellite NO₂ measurements.
- Gridpoint Statistical Interpolation (GSI) assimilation in CMAQ
 - Accounts for background error covariance.
 - Accounts for sensitivity of satellite at different altitudes.
 - Fused to estimate "updated" CMAQ field each timestep.
 - Updated simulation better agrees with satellite.

Updating emissions with CMAQ-GSI

- 1. CMAQ simulates the VCD (Ω_{CMAQ})
 - From standard inputs/outputs
 - Integrated within troposphere
- 2. Calculate the sensitivity (β)
 - via brute-force or DDM or adjoint
 - Monthly resolution
- 3. Assimilate satellite $NO_2(\Delta\Omega)$
 - Account for satellite sensitivity and error covariance
 - Estimate increment to match satellite
- 4. Estimate ΔE using β from step 2 and $\Delta \Omega$ from step 3 and Ω from step 1

1.
$$\Omega_{CMAQ} = M_{w,air}^{-1} \sum_{z} \rho_z \chi_z h_z$$

2.
$$\beta = \frac{\partial e\%}{\partial \omega\%} \approx \frac{\Delta E}{E} \frac{\Omega_{CMAQ}}{\Delta \Omega_{CMAQ,dE}}$$

3.
$$\Delta \Omega = \left(\Omega_{\rm GSI} - \Omega_{\rm CMAQ} \right)$$

4.
$$\frac{\Delta E}{E} = \beta \frac{\Delta \Omega}{\Omega_{CMAQ}}$$

Proof of concept

- Domain: CONUS
- Simulation: 9-31 July 2014
- Results show *successful implementation* of assimilation system
- Iterative emissions update
 - First, we update lightning emissions because OMI is sensitive to lightning NO.
 - Second, we update surface anthropogenic emissions.

OMI NO₂ VCD (Ω)

OMI observations here are screened for cloud fraction <30%

OMI L3 OMNO2d trop column

6

L 0.0

1e16

Sensitivity of NO₂ column to NO_x emissions (β)

Inferred emissions change(ΔE)

mol s⁻

Actually a two-stage process

Stage 1: Lightning updates

Environmental Protection

Agency

- OMI assimilated with a background error covariance sensitive to *lightning NO_X*
- Calculate ΔE as a scaling factor for lightning NO emissions (7.5%)

Stage 2: Anthropogenic Updates

- OMI assimilated with a background error covariance sensitive to *anthropogenic emissions*
- Lightning scaling factor is applied

Preliminary hemispheric TROPOMI results

- Assimilation with TROPOMI NO₂
- Higher resolution, available beginning 2018
- July 2018 with "representative day emissions"
- NO₂ analysis increment

Preliminary – please do not cite or share

-1.00 13

Preliminary hemispheric TROPOMI results

- NO_x emissions inference
- Positive emissions inference across the domain
- Many uncertainties remain
- Next step towards identifying emissions biases

Preliminary – please do not cite or share

Summary

- We implemented a test scenario over CONUS for July 2014 to prepare for an operational system on a hemispheric domain
 - Initial results suggests small NO_x emissions underestimation

This simulation lays the groundwork for an operational system:

- Further refinement of the beta sensitivity parameter will increase precision of emissions estimates
- Can be applied to international emissions to derive improved boundary conditions for US simulations
- Can be quickly applied in situations such as COVID-19 driven emissions changes

Preliminary results and next steps:

- TROPOMI NO₂ retrievals: higher resolution, available starting 2018
- Hemispheric scale simulations

Future work: COVID-19 emissions changes

- Satellite data show significant NO₂ decreases in March 2020 compared to previous years
- An operational system would have the capability to provide immediate $\text{NO}_{\rm x}$ emission estimates for these changes

Environmental Protection

Agency

Thank you!

Disclaimer: The views expressed here are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

jdeast2@ncsu.edu

