

Numerical evaluation of the impacts of emission and meteorological characteristics on air pollution in the Seto Inland Sea region, Japan

Hikari Shimadera^{1,*}, Shin Araki¹, Shota Iida¹, Tomohito Matsuo¹, Akira Kondo¹, Tatsuya Sakurai², Syuichi Itahashi³, Hiroshi Hayami³

1 Osaka University, 2 Meisei University, 3 Central Research Institute of Electric Power Industry

*shimadera@see.eng.osaka-u.ac.jp

Introduction

- Seto Inland Sea (SIS) region in Chugoku-Shikoku (CS) region of Japan
 - > Higher air pollution level compared to the other regions of Japan
 - ➤ Includes SIS with heavy ship traffic volume and its industrialized coastal areas with a number of large point sources (LPSs)
 - > Surrounded by mountains, which suppresses atmospheric ventilation
- This study evaluates the impacts of local emission and meteorological characteristics on air pollution in SIS region as well as the surrounding region (other CS (OCS) region).

Method

• Model Setup

	Baseline Configurations
Model	WRF v3.8, CMAQ v5.2.1
Period	April 2013–March 2014 (JFY 2013)
Domain	East Asia, 45-km grid, 127x107 (D1) Western Japan, 15-km grid, 86x66 (D2) In and around SIS region, 5-km grid, 96x54 (D3) 30 layers (up to 100 hPa, 1st layer height ≈ 50 m)
Topography/Landuse	30-sec USGS/30-sec USGS & 100-m MLIT-GIAJ
Analysis Data	NCEP FNL, JMA MSM-GPV, NCEP/NOAA RTG_SST_HR
WRF Physics	Kain-Fritsch (D1, D2), WSM6, Dudhia/RRTM, YSU PBL, Noah LSM, FDDA: $G_{t, q, uv} = 1.5 \times 10^{-4} \text{ s}^{-1}$ (D1, D2), $0.5 \times 10^{-4} \text{ s}^{-1}$ (D3)
Boundary Conc.	MOZART-4/GEOS5
Emission Data	Anthropogenic outside Japan: HTAP v2.2 (2010), Japan: EAGrid2010 & JEI-DB (Vehicle) & OPRF (Ship) (2010), Biogenic: MEGANv2.04, Biomass burning: FINN v1.5, Volcano: Aerocom
CMAQ Chemistry	SAPRC07 & AERO6nv with Aqueous chemistry

SO₂ Emis. (mmol s⁻¹ km⁻²) 16 8 4 2 1 0.5 O.2 192 (Ship: 60, LPS: 124) PM_{2.5} Emis. (mg s⁻¹ km⁻²) 320 160 80 40 20 10 Total Emiss. in D3 (Gg y⁻¹) 38 (Ship: 12, LPS: 11)

Simulation Cases

- Baseline simulation case
- > Zero-out emission cases for SO_x from ships or from land area (≈ LPSs) in D3
- ➤ Passive tracer (non-reactive and no deposition) case with constant and homogeneous emission in 1st layer over D3 area

Results

AP: Air pollution days with median value of observed daily PM_{2.5} conc. > 35 μ g m⁻³ at SIS stations (23 days) LP: Local air pollution days with contrib. of SO_X emis. in D3 to SO₂ conc. at SIS stations > 70% in AP (7 days)

 \odot WRF-CMAQ successfully simulated SO₂ and PM_{2.5} pollution levels in both SIS and OCS (SIS > OCS).

Annual mean conc. at SIS stations = 1

- \odot Contributions of local SO_x emissions to SO₂ and PM_{2.5} concentration were about 5 and 3 times higher in SIS than in OCS, respectively.
- Passive tracer concentration was about 1.3 times higher in SIS than in OCS, indicating lower ventilation efficiency in SIS.
- Local SO_x contribution and tracer concentration become larger during LP.
- Local emission and meteorological characteristics mainly and partly contribute to higher air pollution level in SIS, respectively.

Summary