Taiwan is an island on the northwest side of the Pacific Ocean. According to Taiwan emission inventory, western Taiwan has larger emissions and major from metropolitan cities, coal-fired power plants, industrial parks, vehicle exhausts and burnings of agriculture wastes. Local emissions will result in severe pollution events, especially under the weak synoptic weather condition (Hsu and Cheng, 2019).

Sensitivity analysis methods, such as brute force method (BFM) and high-order decouple direct method (HDDM), provides the relationship between the emission sources and the ambient air pollutant concentrations. HDDM had been implemented within CMAQ and simultaneously calculated various experiments to reduce inquired time. Moreover, HDDM can accurately capture the nonlinear response of O_3 and PM_{25} to their precursors.

The study episode (Nov. 6-8, 2018) was associated with a weak synoptic weather condition and the stagnant wind trapped the air pollutants near the emission source region. This study utilized CMAQ-HDDM to investigate the impact of different emission sources on O_3 and PM₂₅ concentrations on Nov. 8, 2018.

High-order Decoupled Direct Method (HDDM) directly calculates semi-normalized first- and second-order sensitivity coefficients as eq.1 and eq.2. The changed concentration can be estimated by following eq.3 with a specific perturbation($\delta \varepsilon$) (Hakami et al.,2003; Hakami et al.,2004).

$$S_j^{(1)} = \frac{\partial C}{\partial \varepsilon_j} \text{ (eq.1)} \quad S_j^{(2)} = \frac{\partial^2 C}{\partial \varepsilon_j^2} \text{ (eq.2)} \quad A$$

The meteorological data for CMAQ was from WRF two-nested domain (Fig 2.) The detail setup of WRF and CMAQ models were illustrated in Table 1.

HDDM calculated the sensitivities to NO_x and SO_2 from point sources, NO_x and VOC from line sources, and SO₂ and VOC from area sources in this study.

Introduction

Hakami, A., Odman, M. T., and Russell, A. G.: High-order, direct sensitivity analysis of multidimensional air quality models. Environ. Sci. Technol., 37(11), 2442-2452, 2003. Hakami, A., Odman, M. T., and Russell, A. G.: Nonlinearity in atmospheric response: A direct sensitivity analysis approach. J. Geophys. Res. Atmos., **109**(D15), 2004. Hsu, C. H., and Cheng, F. Y.: Synoptic weather patterns and associated air pollution in Taiwan, Aerosol and Air Quality Research, 19(5), 2239-1151, 2019.

- Conclusions
- 1. During daytime, reducing NO_x emissions from both point and line sources can increase O₃ in downwind area and near sources regions due to decrease of titration effect, and slightly reduce PM_{25} in the inland regions.
- 2. During nighttime, the PM₂₅ increase in coastal areas due to increase of O₃ concentration.
- 3. Reducing the VOC emissions from both area and line sources can reduce O_3 concentration, is smaller than NO_x and SO_2 emissions.

Removing SO₂ emissions from point sources can effectively decrease PM₂₅ in central Taiwan. especially in metropolitan cities, and area sources had larger impact. The influence on PM₂₅