Particulate Matter Emissions from Building Destruction in Armed Conflict Regions Daniel Han **UNC-Chapel Hill Public Policy**

1. Introduction

Negative health effects from particulate matter (PM) inhalation are well-documented, specifically for $PM_{2.5}$, PM less than 2.5 micrometers (µm) in diameter. There has been an abundance of evidence linking PM_{2.5} exposure with cardiovascular and respiratory disease¹. Commonly examined sources of $PM_{2.5}$ emissions include cars and factories, yet a less-discussed source is building collapse. There are only a handful of studies, but one in particular is extensive with many parallels. Pinto et al. (2005) look at the immediate aftermath of the September 11 attacks². Yet the presence of ground-level monitoring devices enable an accuracy that is practically nonexistent in most places that experience frequent armed conflict. While PM_{2.5} can dissipate quickly depending on distance and wind conditions, short exposure durations of even a few hours can lead to deleterious health effects³. This risk is compounded if building collapses occur frequently; thus the goal here is to motivate how to obtain PM_{2.5} figures in the absence of direct readings.

2. Methods

Two models of different complexities are selected for illustrative purposes. The first is a back -of-the-envelope inverse proportion calculation. This calculation is pulled from Stevens et al. $(1984)^4$ and cited in Pinto et al. (2005) as part of their analysis:

$$PM_{2.5}(\mu g/m^3) = \frac{k}{Visibility(m)}$$
(1)

Here, *k* is a constant of proportionality with units $\mu g/m^2$. The general intuition is that the more PM_{2.5} there is floating around, the less distance someone can see into the distance.

The second model relies on satellite remote sensing data but builds upon the first model's same intuition. Aerosol optical depth (AOD) is a measure of how much aerosol, suspended solid and liquid particles, is present in the atmosphere. The "depth" in AOD can be thought of as coming from how satellites obtain measurements of

aerosols. The degree of penetration of electromagnetic radiation will indicate how much aerosol there is; the farther the penetration, the less aerosols there are. Additionally, by using radiation of different wavelengths, the composition of atmospheric aerosols can be teased out as particles will absorb and scatter wavelengths differently. While a simple inverse proportion can also be used by replacing visibility with AOD, a more involved model is pulled from Just et al. $(2015)^{5}$. It consists of two parts:

 $PM_{ij} = (\alpha + u_j) + (\beta_1 + v_j)AOD_{ij} + \beta_2 Temperature_{ij} + \beta_3 RelativeHumidity_{ij} + \beta_2 Temperature_{ij} + \beta_3 RelativeHumidity_{ij} + \beta_3 RelativeHumidity_{$ β_4 MeanAMPBL_j + $\beta_5 \sqrt{Precipitation_i}$ + β_6 RoadwayDensity_i + ε_{ii}

 $\sqrt{\text{PredPM}_{ij}} = \alpha + \beta_1 \sqrt{\text{MPM}_j} + s(X_i, Y_i)_{k(j)} + \varepsilon_{ij}$

an SUV length of 5 m, visibility is estimated at The specifics can be left to the paper itself, gions with large amounts of armed conflict. 20 m. but the general idea is simple. First, coefficients are fit using using AOD, weather conditions, and On-the-ground measurements may be difficult distances, a small change implicates a large potential contributors to $PM_{2.5}$, in this case, how in the face of the scale of destruction, but it change in PM_{2.5} and vice versa. This relationmany cars are on the road. MeanAMPBL is the would offer insight into the longer term conseship may be true, but would drastically increase average planetary boundary layer (PBL) in the quences of armed conflict, thereby influencing measurement error problems. Though arguably morning. PBL affects how quickly PM_{2.5} is dispolicy. There are also implications for individuat that point, $PM_{2.5}$ concentrations are high persed, and because of satellite reliance on visible als, for example, better education and healthcare enough such that the exact level becomes less and infrared light wavelengths, AOD is often only concerning $PM_{2.5}$ exposure. People perhaps alimportant. The sensitivity for the second model measured in daytime. The second part predicts ready have a sense of the dangers given the use of is not as immediately clear, but presumably it PM_{2.5} levels for which AOD measurements are cloth as makeshift, but their effectiveness is likely would be relatively more stable. A small change not available using the mean PM_{2.5} levels of surbounded by the effectiveness of more commercial in any of the covariate measures would likely rounding grids. The fitting process, however, surgical masks. Last but not least, perhaps just as be diluted by the other covariates, and because needs PM_{2.5} levels which must be obtained withimportant is a better understanding of the chemithe spots with missing AOD measurements are out using ground monitors for the purposes here. cal composition of PM exposure. $PM_{2.5}$, after all, predicted using surrounding $PM_{2.5}$ levels, any refers to particles of a physical size, and some change in one of the surrounding areas will sim-**3. Results** substances can be more toxic than others. ilarly be diluted by the other surrounding areas.

To demonstrate the first model, consider Fig*ure 1*, a scene from September 11, and the superimposed black lines. Pulling out a ruler and considering how quickly objects shrink in the distance, visibility can be ballparked to be around 20 m. Setting $k = 5,000 \ \mu g/m^2$, the value for Mexico City, a place with noticeable pollution concerns⁶. the obtained PM_{2.5} concentration is 250 μ g/m³.

The spatial data for the second model is still a work in progress, but nevertheless, a comparison of sensitivity can still be performed in broad strokes. With the first model, the sensitivity of $PM_{2.5}$ estimates depend on visibility. For small

Figure 1. Estimating visibility using a ruler and exponential growth

Stan Honda—AFP/Getty Images

Assuming a standard story height of 4.3 m and

4. Conclusion

A meta-analysis of Chinese studies found that on average, for every increase of PM_{2.5} lev- ²Pinto, Joseph, et al. "Evaluation of Potential Human Exposures to Airborne Particulate Matter Fol-lowing the Collapse of the World Trade Center Towers." Urban Aerosols and Their Impacts, vol. els by 100 μ g/m³ increased daily mortality rates ^{919, 2005, pp. 190–237.} of residents by 12.06%⁷. Plugging in the results from the first model thus predicts an increase of about 30%. Even with the large sensitivity, im-2 shows some of the destruction from the Syrian civil war, suggesting intense short-term exposure to residents and first responders is made even worse by prolonged conflict. Though Pinto CJFDTOTAL-HJYJ200504002.htm

Figure 2. Syria's third largest city in 2014

A stark illustration of the issue's relevance.

et al. (2005) find that staying indoors eliminates pretty much all PM_{2.5} exposure, *Figure 2* shows that staying indoors unlikely to be an option in re-

5. Works Cited

¹Kim, Ki-Hyun, et al. "A Review on the Human Health Impact of Airborne Particulate Matter." Environment International, vol. 74, Jan. 2015, pp. 136–43. DOI.org (Crossref), doi:10.1016/ j.envint.2014.10.005

³Brook, Robert D., et al. "Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement From the American Heart Association." Circulation, vol. 121, no. 21, June 2010, pp. 2331-78. Crossref, doi:10.1161/CIR.0b013e3181dbece1.

⁴Stevens, Robert K., et al. "Source Apportionment Methods Applied to the Determination of the Origin of Ambient Aerosols That Affect Visibility in Forested Areas." *Atmospheric Environment* (1967), vol. 18, no. 2, Jan. 1984, pp. 261–72. ScienceDirect, doi:10.1016/0004-6981(84)90099-4. mediate exposure poses significant risks. *Figure* ⁵Just, Allan C., et al. "Using High-Resolution Satellite Aerosol Optical Depth to Estimate Daily PM2.5 Geographical Distribution in Mexico City." *Environmental Science & Technology*, vol. 49, no. 14, July 2015, pp. 8576-84. PubMed Central, doi:10.1021/acs.est.5b00859

⁶Chow, J.C., Watson, J.G., Lowenthal, D.H. et al. Environ Monit Assess (2002) 79: 29. https://doi-

org.libproxy.lib.unc.edu/10.1023/A:1020047307117 ⁷ Qian, Xiao Lin, et al. "Meta-Analysis of Association Between Air Fine Particulate Matter and Daily Mortality." Journal of Environment and Health, Apr. 2005, http://en.cnki.com.cn/Article en/