

www.epa.gov

1. Background

- Particulate sulfur (most often attributed to SO_4^{2-}) remains a major contributor to PM_{2.5} levels around the globe
- Aqueous conversion of SO_2 to SO_4^{2-} dominates in the presence of cloud/fog Major SO₂ oxidation pathways (i.e., gas phase oxidation by OH and aqueous oxidation via H_2O_2 and O_3) are well understood; however conventional oxidation pathways in existing models are unable to accurately represent high SO₄²⁻ levels observed in some regions (e.g., wintertime Beijing, Fairbanks, AK)
- CMAQv5.3 includes an optional cloud chemistry treatment, AQCHEM-KMT, v2 (KMT2),^{[1],[2]} that treats additional chemistry for S, N, C, and O-H species beyond CMAQ's default cloud chemistry module - Includes additional in-cloud S(IV) oxidation pathways via HNO₄, NO₂, and radicals (e.g., OH), as well as formation and destruction of the S(IV)-HCHO adduct, hydroxymethanesulfonate (HMSA), recently suggested to be a possible contributor to the high particulate S levels observed during Beijing winter haze^[3]
- Here we extend the Sulfur Tracking Method, v5.3, to include the additional S(IV) oxidation pathways in KMT2, implement HMSA as an explicitly tracked/transported species, and investigate the contributions to particulate S concentrations for new and old pathways with an *annual* 2016 CMAQv5.3 simulation over the N. Hemisphere

2. KMT2 and the Sulfur Tracking Method (STM)

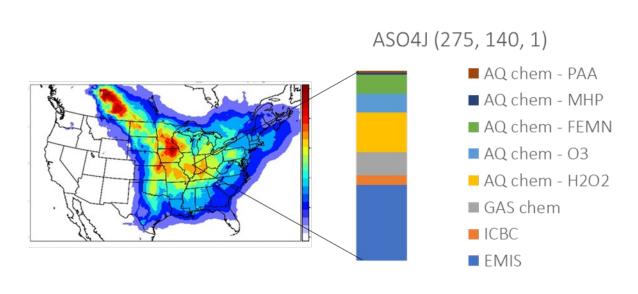


Figure 1. AQCHEM-KMT. AQCHEM-KMT uses the Kinetic PreProcessor (KPP)^[4] to generate the code/integrator for a user-specified chemical mechanism to solve a system of differential equations that describe the evolution of the gas, aqueous, and interstitial aerosol concentrations due to the processes of kinetic mass transfer, ionic dissociation, chemical kinetics, interstitial aerosol scavenging, and wet deposition

In-cloud S chemistry: KMT2 includes standard in-cloud S(IV) oxidation pathways of H₂O₂, O₃, O₂ catalyzed by Fe³⁺/Mn²⁺ (FEMN), CH₃OOH (MHP), $CH_3C(O)OOH$ (PAA), as well as $NO_2^{[5]}$, HNO_4 , and OH, NO_3 , and CH_3O_2 radicals^[4]. Also included is the formation + destruction of HMSA^[6], added to the list of explicitly tracked CMAQ aerosol species for this work

$HNO_4 + HSO_3^- \rightarrow NO_3^- + SO_4^{2-} + 2H^+$	$ HSO_3^- + HCHO \rightarrow HOCH_2SO_3^-$
$2NO_2 + S(IV) \rightarrow 2NO_2 + SO_4^{2-} + xH^{+*}$	$SO_3^{2^-} + HCHO \rightarrow HOCH_2SO_3^{-} + OH^{-}$
$OH + HSO_3^-$	$HOCH_2SO_3^- \rightarrow HSO_3^- HCHO$
$NO_3 + HSO_3^- \rightarrow S \text{ radicals} \rightarrow SO_4^{2-}$	$HOCH_2SO_3^- + OH^- \rightarrow SO_3^{2-} + CH2OHYD$
$CH_3O_2 + HSO_3^-$	$HOCH_2SO_3^- + OH \rightarrow HSO_3^- + HO_2 + HCOOH$

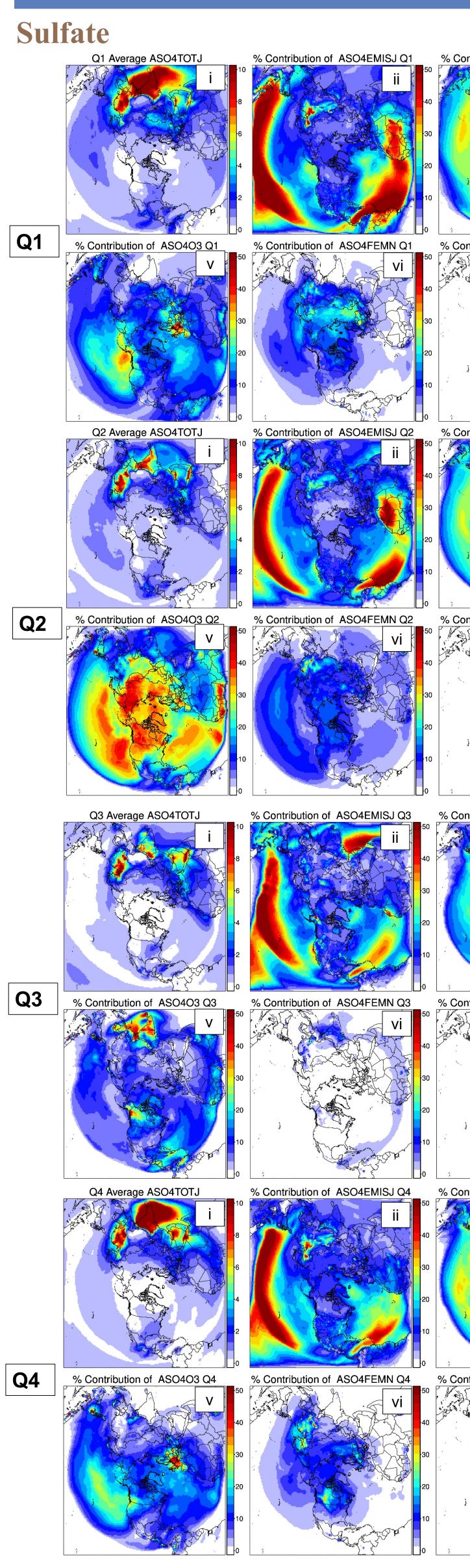
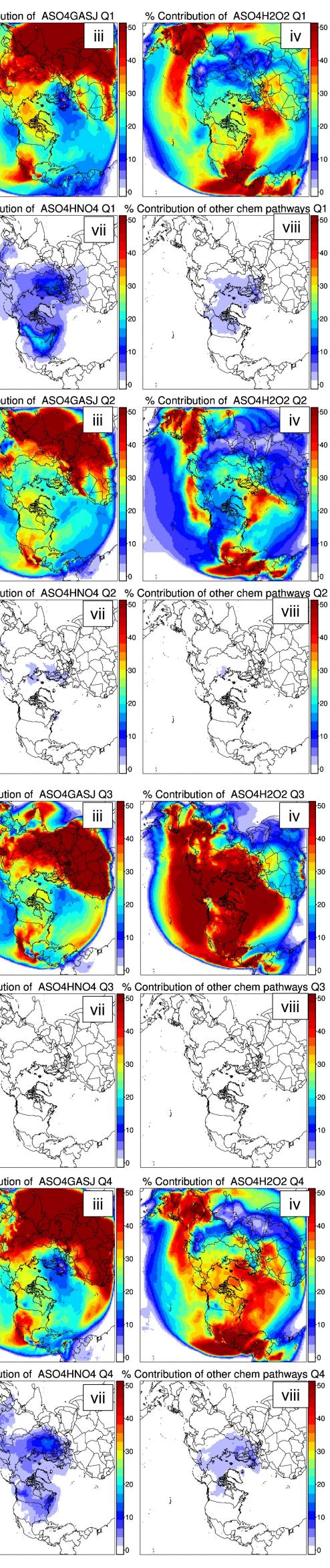
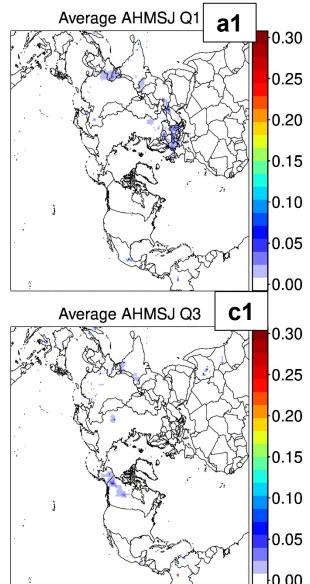
STM: STMv5.3 is a diagnostic option included in CMAQv5.3 for tracking sulfate production from individual gasand aqueous-phase chemical reactions (extended here to include the additional oxidation pathways from KMT2), as well as emissions and IC/BCs

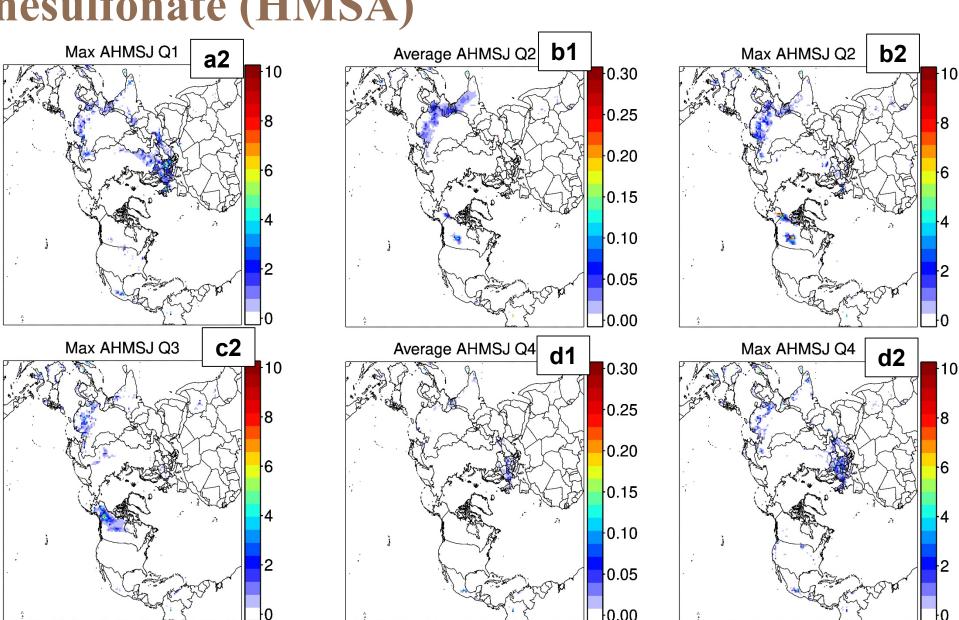
*The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Investigating aqueous production pathways of particulate sulfur in CMAQ with AQCHEM-KMT (version 2) and the sulfur tracking method Kathleen M. Fahey^a and Shawn Roselle^b

^a Atmospheric & Environmental Systems Modeling Division, CEMM, ORD, US EPA ^b Retired; CEMM, ORD, US EPA

- $SO_2 \leftrightarrow THSO_2 + H^+$ Inorg/org chemistry, e.g $(M)GLY + OH \longrightarrow SOA_{c}$ $S(IV) \longrightarrow S(VI)$ wet deposition


Figure 2. (Q1) Jan-Mar 2016, (Q2) Apr-Jun 2016, (Q3) Jul-Sep 2016, and (Q4) Oct-Dec average (i) accumulation mode SO_4^{2-} concentrations and percent contributions from (ii) primary emissions, (iii) gas phase chemistry (OH), and aqueous chemical pathways (iv) H₂O₂, (v) O₃, (vi) metal catalyzed oxidation with Fe³⁺ and Mn²⁺, (vii) HNO₄, and (viii) sum of MHP, PAA, NO₂ and S radical pathways via OH, NO₃, and CH₃O₂. Not shown are contributions from ICBC or contributions for Aitken and coarse modes.

3. Quarterly particulate S contributions for 2016

Hydroxymethanesulfonate (HMSA)

for the base mechanism

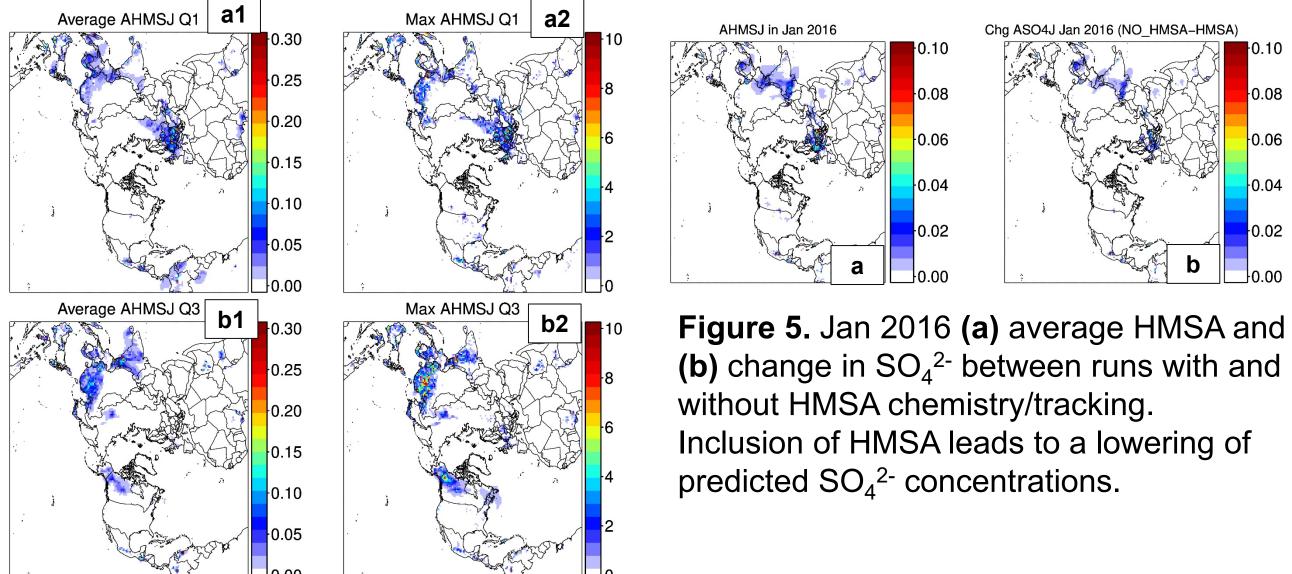


Figure 4. (1) Average and (2) max HMSA for (a) Q1 and (b) Q3 2016 for a sensitivity run without HMSA loss to HSO_3^{-} + HCHO. This reaction is absent from some other published mechanisms^[3].

4. Discussion

- contributions varying across locations and seasons
- model underperformance areas like Beijing here

References: ^[1] Fahey et al., 2017, Geosci. Mod. Dev. • ^[2] Fahey et al., 2017, CMAS • ^[3] Moch et al., Geophys. Res. Lett. Damian et al., 2002, Computers and Chemical Engineering [5] Lee and Schwartz, 1983, Precipitation Scavenging, Dry Deposition, and Resuspension, v1 • ^[6] Leriche et al., 2013, Geosci. Mod. Dev.

Kathleen Fahey I fahey.kathleen@epa.gov I 919-541-3685

Figure 3. (1) Average and (2) Maximum HMSA for (a) Q1, (b) Q2, (c) Q3, and (d) Q4 2016

Direct emissions, gas phase production, and aqueous oxidation via O_3 , H_2O_2 , and FEMN account for the majority of modeled SO_4^{2-} , with relative

- Gas phase oxidation represents a major contribution for all quarters, followed by direct emissions and aqueous production via H_2O_2 . In quarters 1 and 4, there are localized areas where FEMN might contribute as much as or more than H_2O_2 or O_3 pathways - SO_4^{2-} production from HNO₄ can contribute a significant amount of average total SO_4^{2-} , up to 22% (0.8 μ g/m³), particularly in colder months (Q1, Q4); however the new particulate S pathways in KMT2 do not have large average impacts in wintertime

While HMSA average concentration is often $\leq 0.1 \ \mu g/m^3$, hourly values can reach over 10 μ g/m³. A sensitivity run where the degradation of HMSA to HSO₃⁻ and HCHO was neglected (Fig 4) shows an increase in quarterly average HMSA values up to ~1 μ g/m³, though most remain $\leq 0.2 \mu$ g/m³ - Spatiotemporal distribution is highly variable and depends on the amount of LWC and precursors available, droplet pH, and the relative amount of competing oxidants – HMSA observations may help reduce any uncertainties in the mechanism or rates

The increase in particulate S that comes from including HMSA is offset by a loss of SO_4^{2-} (Fig. 5). HMSA serves as a reservoir for S(IV) in cloud/fog water and can prevent the oxidation to S(VI). Addition of HMSA to the model thus can lead to an increase in particulate S from HMSA while SO_4^{2-} decreases.