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* Excessive algal growth in Lake Erie poses threats to the health of the public, « The machine learning (ML) model used is random forest (RF). RF simplified Random Forest Diagram A more detailed understanding between
the economy, and aquatic organisms. Abundance, competition, death, and aggregates multiple decision trees to obtain a consensus prediction All Bata the connection of DO and the top
decay between algae severely depletes dissolved oxygen (DO) which leads to of the response variable (Fig. 4). environmental predictors selected by the
hypoxic conditions in the system (Chislock et al., 2013).  Step 1: Train and validate RF model with all explanatory variables — = RF model needs to be established.
* Healthy Ievel§ of DO are vital for.many aqgatic orga.mism.s. Dp levels less than including a set of generated variables consisting of random numbers Tre“ Treez T ) . Methods applied to the DO data will be
5 mg/L can kill fish and change fish behavior (Quality Criteria for Water 1986, used to reduce noise in the model. T tested and applied to predict total
US EPA, 1986). * Step 2: Optimize the RF model by tuning hyperparameters: mtry and ‘c& }{Q nitrogen and total phosphorus data sets
* In this study, we investigate and predict hypoxia using DO concentrations as ntree. Ci 2) in Lake Erie for the years 2002-2012 with
proxies for the period 2002-2012 by using modeled and observed variables. e Step 3: Examine performance of the RF model through 10-fold cross the data provided by the LEC and GLNPO.
* In the past, we utilized similar techniques pres.ent.ed i.n this stuqu to validation (CV) and evaluate importance of top explanatory variables | 2. i s m tﬁitl‘fd’é‘.".?;’.'.‘gif Crcles indicat continued node split untl e * Other ML algorithms will be explored to
understand harmful algal blooms and eutrophication in Lake Erie (Feng Chang through accumulated local effect (ALE) plots. ICED SR ELS GEr el I el ARE ) evaluate and compare the results of the
et al., 2018). RF model.
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