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• Excessive algal growth in Lake Erie poses threats to the health of the public, 
the economy, and aquatic organisms. Abundance, competition, death, and 
decay between algae severely depletes dissolved oxygen (DO) which leads to 
hypoxic conditions in the system (Chislock et al., 2013). 

• Healthy levels of DO are vital for many aquatic organisms. DO levels less than 
5 mg/L can kill fish and change fish behavior (Quality Criteria for Water 1986, 
US EPA, 1986).

• In this study, we investigate and predict hypoxia using DO concentrations as 
proxies for the period 2002-2012 by using modeled and observed variables. 

• In the past, we utilized similar techniques presented in this study to 
understand harmful algal blooms and eutrophication in Lake Erie (Feng Chang 
et al., 2018). 

• A more detailed understanding between 
the connection of DO and the top 
environmental predictors selected by the 
RF model needs to be established.  

• Methods applied to the DO data will be 
tested and applied to predict total 
nitrogen and total phosphorus data sets 
in Lake Erie for the years 2002-2012 with 
the data provided by the LEC and GLNPO. 

• Other ML algorithms will be explored to 
evaluate and compare the results of the 
RF model. 

• The methods applied to Lake Erie can be 
applied to other Great Lakes, other inland 
lakes, and coastal locations.  

6. NEXT STEPS

ACKNOWLEDGMENTS
• Disclaimer: The views expressed in this 

presentation are those of the authors and 
do not necessarily represent the views or 
policies of the U.S. Environmental 
Protection Agency.

• Special thanks to Dr. Ellen Cooter (EPA 
retiree) who was responsible for 
conducting the CMAQ-BiDi and EPIC 
simulations. We would also like to thank 
James Markham (NY DEC) and Patrick 
Kocovsky (USGS) from the Lake Erie 
Committee Forage Task Group for 
guidance on utilizing LEC data.

Christina Feng Chang1, Marina Astitha1, Valerie Garcia2, Chunling Tang2, Penny Vlahos3,  David Wanik4, Jun Yan5

1Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
2National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA

3Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
4Department of Operations and Information Management, University of Connecticut, Stamford, CT 06901, USA 

5Department of Statistics, University of Connecticut, Storrs, CT 06269, USA 

2. SAMPLE LOCATIONS OF OBSERVED DATA

c

3. MODEL DATA

Fig. 3: Flowchart of model data indicating the directionality of interactions between 
modeling systems. 

Model Data Interactions

• The machine learning (ML) model used is random forest (RF). RF 
aggregates multiple decision trees to obtain a consensus prediction 
of the response variable (Fig. 4).   

• Step 1: Train and validate RF model with all explanatory variables 
including a set of generated variables consisting of random numbers 
used to reduce noise in the model.

• Step 2: Optimize the RF model by tuning hyperparameters: mtry and 
ntree.  

• Step 3: Examine performance of the RF model through 10-fold cross 
validation (CV) and evaluate importance of top explanatory variables 
through accumulated local effect (ALE) plots.

4. WORK FLOW

5. TOP PREDICTORS AND EFFECTS ON DO

Fig. 4: Simplified diagram of the random forest model. Squares indicate root node. Side 
arrows indicate a split in the node. Hollow circles indicate continued node splits until the 
mean square error becomes low (dark circles).

Simplified Random Forest Diagram  

Fig. 1: Dissolved oxygen sample stations (LEC in green; GLNPO in white), and surrounding 
watershed outlets (in red). 

Geographical Map of Lake Erie  

Depth (m) Western Central Eastern

Surface 0 – 2.4  0 – 3.6  0 – 4.0

Middle 2.5 – 4.7 3.7 – 8.6 4.1 – 12.9 

Bottom 4.8 – 10.7 8.7 – 24.4 13 – 48.1 

Table 1: Ranges of Surface, Middle, and Bottom 

layers of DO samples in Western, Central, and 

Eastern Erie basins.  

• Consistent inputs of 
coupled CMAQ-EPIC data 
(Bash et al., 2013) were 
used alongside WRF and 
VIC data (Fig. 3).

• Point variables (Point) 
were obtained by pairing 
the closest model grid 
point to each sample 
station. 

• Watershed variables 
(WS) were created by 
aggregating daily values 
for all grids in the HUC-8 
watershed draining into 
the lake.

Fig. 2: Frequency distribution of DO at Middle 

and Bottom layers.  

• Focus of this study is in the Middle and Bottom 
layers where problematic instances of DO 
<5mg/L tend to occur. A total of 3952 raw DO 
data points are used (Fig. 2).

1. INTRODUCTION

Top 30 Predictors of DO

Fig. 5: DO variable importance plot. Higher 
%IncMSE means higher importance. The 
number at the end of a variable indicates a 
lag from 1 to 5 days. 

Random Forest Prediction of DO (mg/L)

Fig. 6: Prediction of DO at the Middle and Bottom layers. Dashed black line is 
the one-to-one line; black bold line is the regression line; dotted red lines are 
the FAC2 lines. 

Table 2: Definition of top predictors of DO listed in Fig. 5.  

Top Predictors                        Units                        Definition Model
Depth M in water depth of DO sample in station
Longitude degrees (°) longitude of sample station
R_humidity_Point relative humidity WRF
Radiation_Point W/m2 radiation WRF
Taverage_Point ℃ average air temperature (Tmin+Tmax)/2 WRF

Windspeed_Point m/s wind speed WRF
Dry_Reduced_ND (Point, WS) kg/ha dry deposited reduced N CMAQ
ET_mm mm evapotranspiration VIC
Q_cfs cfs waterflow VIC

SM2 mm soil moisture layer 2 (10-40 cm) VIC
SM3 mm soil moisture layer 3 (40-150 cm) VIC

Water_Temp_C ℃ water temperature at outlet of closest watershed VIC
L1_AMP_WS kg/ha layer 1 MP (mineralized P) application rate EPIC
L1_ANO3_WS kg/ha layer 1 (N-NO3) nitrate application rate EPIC

Fig. 7: Overlaid accumulated local effect (ALE) plots for the top variables listed in the variable importance plot in Fig. 5. Each colored 
line represents a specific lag day according to the legend. ALE plots indicate the change in DO (y-axis) as a consequence of an 
exploratory variable (x-axis).  

No lag – black, Lag 1 – blue, Lag 2 – green, Lag 3 – red, Lag 4 – orange, Lag 5 – purple
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Histogram of DO (mg/L) Data 

• Static variables quantify the physical characteristics of the lake.
• In addition to each individual variable, each modeled variable was lagged for 

5 days resulting in 255 predictor variables.

There is an overprediction when 
DO is less than 5 mg/L (Fig. 6). 
Overall, 98.3% of the model’s 
predictions are within 2 and 0.5 
times the observations. 

The model identifies DO < 5mg/L, 
48.2% of the time, and DO ≥ 5 
mg/L, 99.5% of the time. 

The model 
correctly detects 
between hypoxic 
vs. non-hypoxic 
conditions over 
97.0% of the 
time. 

http://airmg.uconn.edu/

