HyADS: A tool for estimating nationwide exposures to emissions from large numbers of sources

Lucas Henneman (and many others)

Department of Environmental Health, Harvard School of Public Health

CMAS

21 October, 2019

The Team

Project 4 of the Harvard/MIT ACE Center EPA STAR Grant #RD83587201

Team

- Cory Zigler
 - UT Austin
- Christine Choirat
 - ETH Zurich
- Kevin Cumminskey
 - West Point
- Chanmin Kim
 - Boston University

Harvard/MIT Center

- Maja Garbulinska
- Irene Dedoussi
- Petros Koutrakis
- Steven Barrett
- Francesca Dominici

Outside Center

- Cesunnica Ivey
 - Univ. California Riverside
- Joan Casey
 - Columbia University

Motivation

- We know:
 - The US spends tens of billion \$/yr regulating air quality
 - Regulations manifest as discrete actions on individual point sources
- We want to know:
 - Can we establish <u>direct</u>
 <u>epidemiological evidence</u> that we
 are healthier because of the
 regulations?

Connecting power plants to people with HyADS

- HYSPLIT simulates dispersion of 100 parcels from each stack
 - Parcels tracked for 10 days
 - Omit near-source impacts
 - Omit parcels above planetary boundary layer
 - Parcels not resuspended
- Repeat at 6 hour intervals daily
- NCEP Reanalysis meteorology
- Locations aggregated to 12km 3D grid with monthly boundary layer as height
- Weight by monthly SO₂ emissions

2005 HyADS exposure for facility 6113, Unit 1

- Accessible through hyspdisp R package www.github.com/lhenneman/hyspdisp
- Thanks to hard work by Maja Garbulinska, will soon be updated to disperseR

Connecting people to power plants with HyADS

- Reduced complexity
 - Simplified chemistry/transport
 - Identifies areas impacted, not concentration
- Increased scalability
 - Source receptor matrix from ~1k sources
 - Estimate source impact changes from interventions
 - Develop counterfactual scenarios
 - 1 year run in 1 week (using R!)

HyADS (2005)

Application-specific evaluations

Source impacts on specific geographies

- Geos-CHEM adjoint sensitivities
- State-level, averaged PM_{2.5} from emissions perturbations anywhere in the 3D domain
- Power plant rank correlations
 - High for states near sources (e.g., PA)
 - Lower for far states (e.g., CA)

HyADS reproduces features in more complex models important for health analyses

Ivey et al. 2015 ES&T Dedoussi et al. 2019 ERL Henneman et al. 2019 Atmospheric Environment

Emissions changes and national reductions in HyADS exposure

- 65% reduction in coal power plant SO₂ emissions, 2005-2012
- 69% reduction in HyADS exposure, 2005-2012
- 32% reduction in average PM_{2.5} concentration, 2005-2012
- Questions
 - Did adverse health outcomes decrease with decreasing coal emissions?
 - Are associated decreases different in HyADS and total PM_{2.5}?

Changes in Medicare hospitalization rates associated with coal exposure reductions

- Reduced health outcomes associated with reduced coal emissions and PM_{2.5} exposure
- Regression with Hybrid CMAQ-DDM to convert HyADS to coal PM_{2.5}
- Evidence of larger health reductions for coal exposure reductions than PM_{2.5} reductions

Energy transitions near Louisville, KY

- Identified top four facilities impacting Louisville in 2012 using HyADS
- All units installed SO₂ emissions control or shuttered by 2016
- HyADS exposure decreased over time
- Question did these interventions lead to reduced asthma?

unitless

HyADS,

3e+04

2e+04

5

J. Casey *et al. In review*

Louisville energy transitions natural experiment

- Largest emissions change spring 2015 (Quarter 2)
- Spatial variability across Louisville in who benefited
- ~20% reduction in asthma risk following intervention
- Benefits of transition strongest in areas identified by HyADS

0

Select units' HyADS absolute change

Casey et al. In review

Exposure change and interventions: not all attributable to emissions

- Two reasons for changing exposure:
 - Meteorological variability
 - Emissions change

Exposure = f (Meteorology | Emissions)

 $\Delta \text{Exposure} = f(\text{Met}_{after} | \text{Emiss}_{after}) - f(\text{Met}_{before} | \text{Emiss}_{before})$

 $\Delta Exposure_{met} = f(Met_{before} | Emiss_{before}) - f(Met_{after} | Emiss_{before})$

 $\Delta \text{Exposure}_{\text{emiss}} = f(\text{Met}_{\text{after}} | \text{Emiss}_{\text{before}}) - f(\text{Met}_{\text{after}} | \text{Emiss}_{\text{after}})$

Henneman et al. 2019 Env. Res. Letters

Changes in Louisville exposure

- HyADS change relative to 2012, first quarter
- HyADS exposure changes before 2015 primarily attributable to meteorological variability

Attributing changes national exposure to emissions/meteorology

- Meteorology plays role in who benefits from emissions reductions
 - Δ Meteorology led to <u>smaller</u> Δ Exposure, 2005-2011
 - ΔMeteorology led to larger ΔExposure, 2005-2012
- Attributed to greater recirculation winds around the continent in 2012

Henneman et al. 2019 Env. Res. Letters

In the works – conversion to $\mu g m^{-3}$

- Primarily based on Hybrid CMAQ-DDM
- Accounts for monthly trend, precipitation, temperature
- Annual NMB: 11%
- Annual NME: 22%
- Annual R²: 0.88

The goal: alternative interpretation of HyADS

(Not to reproduce CMAQ-DDM)

HyADS

Conclusions

- HyADS reduced complexity, but...
 - Nimble way to create source-receptor matrix
 - Captures spatial-temporal variability important for environmental health research
- National health benefits achieved through coal emissions reductions
- Asthma reductions in Louisville following multiple interventions
- Meteorology has substantial impacts on calculated benefits
- HyADS currently available as R package

www.github.com/lhenneman/hyspdisp

References

- Henneman, L.R.F., Choirat, C., and Zigler, C.M. (2019). "Accountability Assessment of Health Improvements in the United States Associated with Reduced Coal Emissions Between 2005 and 2012." Epidemiology. <u>https://journals.lww.com/epidem/Fulltext/2019/07000/Accountability Assessment of Health Improvement</u> <u>ts.3.aspx</u>
- Henneman, L.R.F., Liu, C., Mulholland, J. A., & Russell, A. G. (2016). Evaluating the Effectiveness of Air Quality Regulations: A Review of Accountability Studies and Frameworks. *Journal of the Air & Waste Management Association*, 67(2), 144–172. <u>http://doi.org/10.1080/10962247.2016.1242518</u>
- Henneman, L.R.F., Ivey, C., Choirat, C., Cummiskey, K., and Zigler, C.M. (2019). "Characterizing population exposure to coal emissions sources in the United States using the HyADS model." Atmospheric Environment. <u>https://www.sciencedirect.com/science/article/pii/S1352231019300731</u>
- Henneman, L.R.F., Mickley, L.J., and Zigler, C.M. (2019) "Air pollution accountability of energy transitions: the relative importance of wind fields and emissions in exposure changes." Environmental Research Letters. <u>https://iopscience.iop.org/article/10.1088/1748-9326/ab4861</u>
- Ivey, C. E., Holmes, H. A., Hu, Y. T., Mulholland, J. A., & Russell, A. G. (2015). Development of PM_{2.5} source impact spatial fields using a hybrid source apportionment air quality model. *Geoscientific Model Development*, 8(7), 2153–2165. <u>http://doi.org/10.5194/gmd-8-2153-2015</u>
- Boys, B. L., Martin, R. V., Van Donkelaar, A., MacDonell, R. J., Hsu, N. C., Cooper, M. J., ... Wang, S. W. (2014). Fifteen-year global time series of satellite-derived fine particulate matter. *Environmental Science and Technology*, 48(19), 11109–11118. <u>http://doi.org/10.1021/es502113p</u>
- Health Effects Institute. (2003). Assessing Health Impact of Air Quality Regulations: Concepts and Methods for Accountability Research. Retrieved from <u>http://pubs.healtheffects.org/getfile.php?u=261</u>
- Dedoussi I., Allroggen F., Flanagan R., Hansen T., Taylor B., Barrett S., Boyce J. 2019. Environmental Research Letters. <u>https://iopscience.iop.org/article/10.1088/1748-9326/ab34e3</u>

Extra slides

Large reduction in emissions from United States coal power plants

25 largest facilities

- ~ 1,000 coal electricity generating units (power plants) operating in 2005 and 2012
- SO₂ emissions decreased 65% between 2005 and 2012
- Interventions are costly (\$10's of billions year⁻¹)

https://www.flickr.com/photos/wigwam/2630349031

HyADS Evaluations: Regional comparison with CMAQ-DDM hybrid sensitivities

- Application-specific evaluation important for reduced complexity models
- CMAQ-DDM hybrid PM_{2.5} coal sensitivities seen as gold standard
- High correlation in all regions

Ranking facilities by population-weighted impact in Louisville, KY

- Top 20 facilities that impact Louisville are spread through the Midwest
- Three facilities with large impacts remained in 2012