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Ammonia in the Atmosphere

(Shephard et al., ACPD, 2019)

5-year mean of surface NH3 from CrIS (2013-2017)



Challenges Modeling Ammonia

• Emissions 
estimation from 
variable sources 

• Volatility of gas 

• Potential for 
bidirectional flux

Lonsdale et al., ACP, 2017

within San Joaquin Valley



Uncertainty in Ammonia Emissions

• Between 25% and 
50% spread in 
emissions 
estimates exists 
across inventories. 

• Select agricultural 
contributions are 
equivalent to other 
estimates of total 
emissions.

Zhu et al., Curr. Pollution Rep., 2015



Assimilating CrIS Observations

Shephard and Cady-Pereira, Atmos. Meas. Tech., 2015
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Sample CrIS Retrievals

CrIS v.1.3, July 1
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Simulating CrIS Observations
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CrIS Retrieval Applied to CMAQ
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Comparing CrIS Observations of 
Ambient & CMAQ Ammonia
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Attribute Difference to 
Emissions with CMAQ adjoint

∂ concentrations( )
∂ emissions( )

Menut et al., 2000; Hakami et al., 2006; Henze et al., 2007 

∂(SO2 Power Plant Emissions)

∂(NH3 Agricultural Emissions)

∂(Refinery NOx Emissions)

∂(NOx Vehicle Emissions)

∂(Seasalt Emissions)
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Attribute Difference to 
Emissions with CMAQ adjoint
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Adjoint of  
CrIS Observation Operator

The Jacobian of the observation operator compares well  
between the adjoint and the complex variable method (CVM).

CVM, Adjoint Sensitivities



Sample Adjoint Forcing 
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Refining Emissions with 
CrIS Observations
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Evaluating a python-based  
4-D Variational Framework
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Random noise is applied to each background prior estimate 
and observation to assess ability to recover original prior. 



Evaluating a Python-based  
4-D Variational Framework

Reasonable recovery of the prior in this  
pseudo-observational tracer experiment provides 

confidence in the 4-D Var python framework.



Development of an Offline 
Ammonia Model & Adjoint for CMAQ



Development of an Offline 
Ammonia Model & Adjoint for CMAQ



Summary & Next Steps

• Resolving differences in NH3 observations from CrIS 
and simulated CrIS observations of CMAQ fields will 
allow revision of NH3 emissions with spatial specificity. 

• A python-based 4-DVar framework with the CMAQ-
adjoint has been shown to recover emissions with 
generic pseudo-observations. 

• Transport, inorganic thermodynamics, and depositional 
processes will be included in the revision of emissions. 
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Satellite-based Observations

Lonsdale et al., ACP, 2017





Impacts: Nitrogen Deposition
Deposition of ammonia, ammonium, and 

associated nitrate aerosol affects ecosystems.  

Benedict et al., JGR-Atmos., 2013

Deposition near Grand Tetons National ParkAtmospheric deposition of NHx to oceans

(g N m-2 y-1)

Jickels et al., Global Biogeochem. Cycles, 2018



Impacts: Radiative Forcing

Paulot et al., Atmos. Chem. Phys., 2018

March, April, May

Paulot et al. found small increases in nitrogen-
related emissions had a disproportionate impact 

on the clear sky, direct radiative effect.



Impacts: PM2.5 Contribution

Henze et al., Atmos. Chem. Phys., 2009

At certain times and places, 
controlling ammonia emissions 

would be the most efficient way 
to avoid a PM2.5 exceedance.

Ammonia neutralizes sulfate 
and nitrate; sulfate decreases 
leave more ammonium for 
neutralizing nitrate.


