Towards Refining Estimates of Ammonia Emissions: Modeling Framework Preparations

Mahmoudreza Momeni¹, Shannon Capps¹, Matthew Lombardo², Shunliu Zhao³, Amir Hakami³, Daven Henze⁴, Steven Thomas⁵, Jeremy Silver⁵, Peter Rayner⁵, and the CMAQ adjoint development team

¹Drexel University, ²Johns Hopkins University, ³Carleton University, ⁴University of Colorado at Boulder, ⁵University of Melbourne

CMAS 2019

Ammonia in the Atmosphere

5-year mean of surface NH₃ from CrIS (2013-2017)

(Shephard et al., ACPD, 2019)

Challenges Modeling Ammonia

- Emissions

 estimation from
 variable sources
- Volatility of gas
- Potential for bidirectional flux

Lonsdale et al., ACP, 2017

Uncertainty in Ammonia Emissions

- Between 25% and 50% spread in emissions estimates exists across inventories.
- Select agricultural contributions are equivalent to other estimates of total emissions.

Assimilating CrIS Observations

$$x_c^{est} = x_a + A(x_c^{mapped} - x_a)$$

where x_a is a profile based on clean, moderate, or polluted conditions

Shephard and Cady-Pereira, Atmos. Meas. Tech., 2015

Sample CrIS Retrievals

courtesy of Mark Shephard

Simulating CrIS Observations

CrIS Retrieval Applied to CMAQ

Comparing CrIS Observations of Ambient & CMAQ Ammonia

Attribute Difference to Emissions with CMAQ adjoint

Menut et al., 2000; Hakami et al., 2006; Henze et al., 2007

Attribute Difference to Emissions with CMAQ adjoint

$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$
$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$
$\partial \sigma_{NH_3}$	∂σ _{NH3}	$\frac{\partial J}{\partial NH_3}$	-д σ_{NH_3}	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$
$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$
$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$
$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$	$\partial \sigma_{NH_3}$

Adjoint of CrIS Observation Operator

The Jacobian of the observation operator compares well between the adjoint and the complex variable method (CVM).

Refining Emissions with CrIS Observations

Refining Emissions with CrIS Observations

Evaluating a python-based 4-D Variational Framework

Random noise is applied to each background prior estimate and observation to assess ability to recover original prior.

Evaluating a Python-based 4-D Variational Framework

Reasonable recovery of the prior in this pseudo-observational tracer experiment provides confidence in the 4-D Var python framework.

Development of an Offline Ammonia Model & Adjoint for CMAQ

Difference (^{µg}/_{m³})

Development of an Offline Ammonia Model & Adjoint for CMAQ

Summary & Next Steps

- Resolving differences in NH₃ observations from CrIS and simulated CrIS observations of CMAQ fields will allow revision of NH₃ emissions with spatial specificity.
- A python-based 4-DVar framework with the CMAQadjoint has been shown to recover emissions with generic pseudo-observations.
- Transport, inorganic thermodynamics, and depositional processes will be included in the revision of emissions.

Acknowledgements

- Mark Shephard of Environment and Climate Change Canada for CrIS observations
- NASA New Investigator Program Award #80NSSC18K1302

Questions?

Satellite-based Observations

Impacts: Nitrogen Deposition

Deposition of ammonia, ammonium, and associated nitrate aerosol affects ecosystems.

Impacts: Radiative Forcing

Paulot et al. found small increases in nitrogenrelated emissions had a disproportionate impact on the clear sky, direct radiative effect.

Paulot et al., Atmos. Chem. Phys., 2018

Impacts: PM_{2.5} Contribution

Ammonia neutralizes sulfate and nitrate; sulfate decreases leave more ammonium for neutralizing nitrate.

At certain times and places, controlling ammonia emissions would be the most efficient way to avoid a PM_{2.5} exceedance.

Henze et al., Atmos. Chem. Phys., 2009