AIR QUALITY MODELING OF A TYPICAL WINTERTIME PM2.5 POLLUTION EVENT IN CACHE VALLEY, UTAH: IMPLICATIONS FOR EMISSION CONTROL STRATEGIES

NANCY DAHER, PH.D. & CHRISTOPHER PENNELL AIR QUALITY MODELER

AIR QUALITY

OVERVIEW

- Confined Topography
- Complex Terrain
- Strong Winter-time Inversions
- Exceedances of 24-hr PM2.5 NAAQS during Winter Inversions

OVERVIEW

- Confined Topography
- Complex Terrain
- Strong Winter-time Inversions
- Exceedances of 24-hr PM2.5 NAAQS during Winter Inversions

PM2.5 dominated by NH4NO3

Womack et al. , AQUARIUS 2019 workshop.

OBJECTIVE

- Model a Typical Wintertime PM2.5 Inversion Event
- Implications for Control Strategies

MODELING DOMAIN

MODEL CONFIGURATION

- CAMxv6.3
- > 41 Vertical Layers
- Cb6r2h Chemistry Mechanism
- ZHANG03 Dry Deposition
 Scheme
- SMOKE3.6.5 Emissions
 Processor
- WRF Meteorological Processor

+ Custom Modifications

MODELING EPISODE: WINTERTIME INVERSION

Logan Monitoring Station

Measured - NAAQS

MODEL MODIFICATIONS: SURFACE SNOW ALBEDO

Set Snow Cover Fraction to 0.88 for Urban Land Use

MODEL MODIFICATIONS: OZONE DEPOSITION VELOCITY

Zeroed-out Ozone Deposition Velocity

Histogram of ozone deposition velocity calculations for the snow-covered period (early February) inclusive of both nighttime and daytime data. Mean and median ozone deposition velocity were -0.002 and 0.0 cm s-1

Helmig D. Et al. (2014). Final report: 2013 Uinta Basin Winter Ozone Study.

MODEL MODIFICATIONS: AMMONIA INJECTION & SURFACE DEPOSITION

Logan Monitoring Station

Modeled

Increased Surface Resistance to Ammonia ("RScale = 1")

County	Saling Factor
Cache	80
Box Elder	6
Weber	6
Davis	4
Salt Lake	4
Tooele	6
Utah	4

2017 Utah Winter Fine Particulate Study.

RESULTS: 24-HR PM2.5

RESULTS: 24-HR PM2.5

RESULTS: 24-HR PM2.5

RESULTS: PM2.5 CHEMICAL SPECIATION

Jan. 07, Peak PM2.5 Day

RESULTS: CLNO2 ON A TYPICAL EXCEEDANCE DAY

RESULTS: HCL ON A TYPICAL EXCEEDANCE DAY

RESULTS: GASEOUS SPECIES – NOx

18

RESULTS: GASEOUS SPECIES – NOx

RESULTS: GASEOUS SPECIES – OZONE

RESULTS: GASEOUS SPECIES – OZONE

FINDINGS & IMPLICATIONS

- Temporal Variation in PM2.5 Well Replicated
- Underestimation in Ammonium Nitrate
- Overestimation in NOx/Underestimation in O3 during Daytime Hours
- Potential Underestimation in Free Radical Sources
- Model Potentially Showing Disbenefits for Controlling NOx

ACKNOWLEDGMENTS

- Gail Tonnesen, EPA Region 8
- Chris Emery, Ramboll
- Erik Crosman, West Texas A&M University

THANK YOU

$NO + O_3 \rightarrow NO_2$	(R1)
$NO_2 + hv \rightarrow NO + O$	(R2)
$O + O_2 \rightarrow O_3$	(R3)
$NO_2 + OH \rightarrow HNO_3$	(R4)
$NO_2 + O_3 \rightarrow NO_3$	(R5)
$NO_2 + NO_3 \rightarrow N_2O_5$	(R6)
N_2O_5 + aerosol \rightarrow 2 HNO ₃	(R7)
N_2O_5 + aerosol \rightarrow HNO ₃ + CINO ₂	(R8)
$NO + OH \rightarrow HONO$	(R9)
$HNO_3 + NH_3 \leftrightarrow particulate NH_4NO_3$	(R10)

MODEL MODIFICATIONS: SNOW FRACTION

RESULTS: GASEOUS SPECIES – NOx

RESULTS: GASEOUS SPECIES – OZONE

