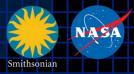
Tropospheric Emissions: Monitoring of Pollution

TEMPO: Atmospheric Pollution Measurements from Geostationary Orbit (TEMPO.SI.EDU!)

Kelly Chance

18th Annual CMAS Conference UNC Chapel Hill October 21, 2019



Hours Menne

Hourly atmospheric pollution from geostationary Earth orbit

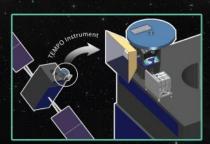
PI: Kelly Chance, Smithsonian Astrophysical Observatory Deputy PI: Xiong Liu, Smithsonian Astrophysical Observatory Instrument Development: Ball Aerospace Project Management: NASA LaRC Other Institutions: NASA GSFC, NOAA, EPA, NCAR, Harvard, UC Berkeley, St. Louis U, U Alabama Huntsville, U Nebraska, RT Solutions,

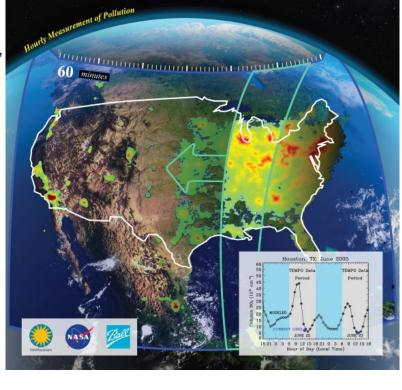
Carr Astronautics

International collaboration: Mexico, Canada, Cuba, Korea, U.K., ESA, Spain

Selected Nov. 2012 as NASA's first Earth Venture Instrument

- Instrument delivery 2018
- NASA has arranged hosting on a commercial geostationary communications satellite with launch expected 2/2022

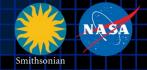

Provides hourly daylight observations to capture rapidly varying emissions & chemistry important for air quality


Distinguishes boundary layer from free tropospheric & stratospheric ozone

TEMPO

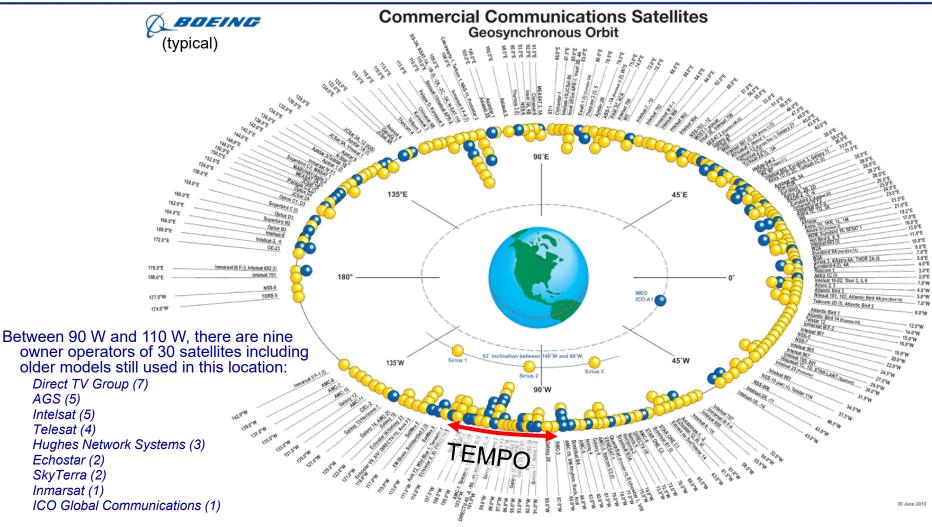
Tropospheric Emissions: Monitoring of Pollution

TEMPO's concurrent high temporal (hourly) and spatial resolution measurements from geostationary orbit of tropospheric ozone, aerosols, their precursors, and clouds create a revolutionary dataset that provides understanding and improves prediction of air quality and climate forcing in Greater North America.



North American component of an international constellation for air quality observations

The view from GEO



22,236 miles away!

The old Chance place

10/21/19

Geostationary orbit opportunities of interest

TEMPO will be located at 91° West

NASA

Smithsonian

TEMPO status

- Instrument completed, accepted, delivered, now in storage
- Commercial geostationary satellite host selected for launch in February 2022 to 91°W

Ready for storage

10/21/19

NPO

TEMPO instrument concept

Measurement technique

PO

- Imaging grating spectrometer measuring solar backscattered Earth radiance
- Spectral band & resolution: 290-490 + 540-740 nm @ 0.6 nm FWHM, 0.2 nm sampling
- 2 2-D, 2k × 1k, detectors image the full spectral range for each geospatial scene

• Field of Regard (FOR) and duty cycle

- Mexico City/Yucatan, Cuba to the Canadian oil sands, Atlantic to Pacific
- Instrument slit aligned N/S and swept across the FOR in the E/W direction, producing a radiance map of Greater North America in one hour

Spatial resolution

- 2.1 km N/S \times 4.7 km E/W native pixel resolution (9.8 km²)
- Co-add/cloud clear as needed for specific data products
- Standard data products and sampling rates
 - Most sampled hourly, including eXceL O₃ (troposphere, PBL)
 - NO₂, H₂CO, C₂H₂O₂, SO₂ sampled hourly (average results for \geq 3/day if needed)
 - Measurement requirements met up to 50° for SO₂, 70° SZA for other products

- 1. What are the temporal and spatial variations of emissions of gases and aerosols important for air quality and climate?
- 2. What are the physical, chemical, and dynamical processes that transform tropospheric composition and air quality over scales ranging from urban to continental, diurnally to seasonally?
- 3. How does air pollution drive **climate forcing** and how does climate change affect air quality on a continental scale?
- How can observations from space **improve air quality** 4. forecasts and assessments for societal benefit?
- How does **intercontinental transport** affect air quality? 5.
- How do **episodic events**, such as wild fires, dust outbreaks, 6. and volcanic eruptions, affect atmospheric composition and air quality? 10/21/19

TEMPO Science Team, U.S. 븷

APO

Team Member	Institution	Role	Responsibility
K. Chance	SAO	PI	Overall science development; Level 1b, H ₂ CO, C ₂ H ₂ O ₂
X. Liu	SAO	Deputy PI	Science development, data processing; O_3 profile, tropospheric O_3
J. Al-Saadi	LaRC	Deputy PS	Project science development
J. Carr	Carr Astronautics	Co-I	INR Modeling and algorithm
M. Chin	GSFC	Co-I	Aerosol science
R. Cohen	U.C. Berkeley	Co-I	NO ₂ validation, atmospheric chemistry modeling, process studies
D. Edwards	NCAR	Co-I	VOC science, synergy with carbon monoxide measurements
J. Fishman	St. Louis U.	Co-I	AQ impact on agriculture and the biosphere
D. Flittner	LaRC	Project Scientist	Overall project development; STM; instrument cal./char.
J. Herman	UMBC	Co-I	Validation (PANDORA measurements)
D. Jacob	Harvard	Co-I	Science requirements, atmospheric modeling, process studies
S. Janz	GSFC	Co-I	Instrument calibration and characterization
J. Joiner	GSFC	Co-I	Cloud, total O ₃ , TOA shortwave flux research product
N. Krotkov	GSFC	Co-I	NO ₂ , SO ₂ , UVB
M. Newchurch	U. Alabama Huntsville	Co-I	Validation (O ₃ sondes, O ₃ lidar)
R.B. Pierce	NOAA/NESDIS	Co-I	AQ modeling, data assimilation
R. Spurr	RT Solutions, Inc.	Co-I	Radiative transfer modeling for algorithm development
R. Suleiman	SAO	Co-I, Data Mgr.	Managing science data processing, BrO, H ₂ O, and L3 products
J. Szykman	EPA	Co-I	AIRNow AQI development, validation (PANDORA measurements)
O. Torres	GSFC	Co-I	UV aerosol product, Al
J. Wang	U. Iowa	Co-I	Synergy w/GOES-R ABI, aerosol research products
J. Leitch	Ball Aerospace	Collaborator	Aircraft validation, instrument calibration and characterization
D. 10/21/19	LaRC	Collaborator	GEO-CAPE mission design team member 9

Team Member	Institution	Role	Responsibility
Randall Martin	Dalhousie U.	Collaborator	Atmospheric modeling, air mass factors, AQI development
Chris McLinden	Environment Canada	Collaborator	Canadian air quality coordination
Michel Grutter de la Mora	UNAM, Mexico	Collaborator	Mexican air quality coordination
Gabriel Vazquez	UNAM, Mexico	Collaborator	Mexican air quality, algorithm physics
Amparo Martinez	INECC, Mexico	Collaborator	Mexican environmental pollution and health
J. Victor Hugo Paramo Figeuroa	INECC, Mexico	Collaborator	Mexican environmental pollution and health
Brian Kerridge	Rutherford Appleton Laboratory, UK	Collaborator	Ozone profiling studies, algorithm development
Paul Palmer	Edinburgh U., UK	Collaborator	Atmospheric modeling, process studies
Alfonso Saiz-Lopez	CSIC, Spain	Collaborator	Atmospheric modeling, process studies
Juan Carlos Antuña Marrero	GOAC, Cuba	Collaborator	Cuban Science team lead, Cuban air quality
Osvaldo Cuesta	GOAC, Cuba	Collaborator	TEMPO validation, Cuban air quality
René Estevan Arredondo	GOAC, Cuba	Collaborator	TEMPO validation, Cuban air quality
J. Kim	Yonsei U.		Korean GEMS, CEOS constellation of GEO pollution monitoring
C.T. McElroy	York U. Canada	Collaborators,	CSA PHEOS, CEOS constellation of GEO pollution monitoring
B. Veihelmann	ESA	Science Advisory Panel	ESA Sentinel-4, CEOS constellation of GEO pollution monitoring
J.P. Veefkind	KNMI		ESA Sentinel-5P (TROPOMI)

1PO

NASA

Smithsonian

Air quality requirements from the GEO-**CAPE Science Traceability** Matrix

11-28-2011 DRAFT GEO-CAPE aerosol-atmospheres Science Traceability Matrix BASELINE and THRESHOLD

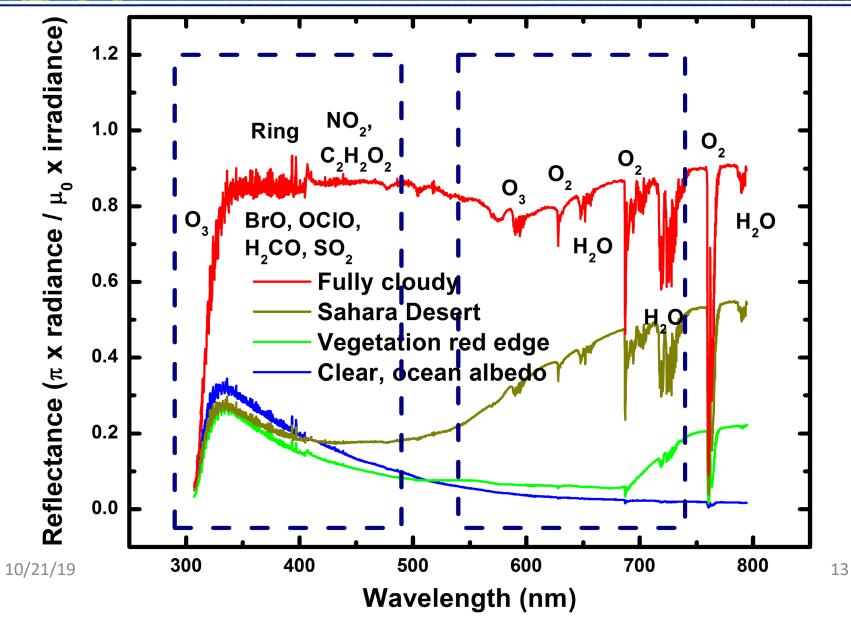
Science Questions	Measurement Objectives (color flag maps to Science Questions)				ements Objectives)	Measurement Rationale
. What are the	Baseline measurements ¹ :	Geostationary Observing Location: 100 W +/-10				Provides optimal view of North America
temporal and spatial variations	O3, NO2, CO, SO2, HCHO, CH4, NH3, CHOCHO, different temporal sampling frequencies, 4 km x 4 km product horizontal spatial resolution at the center	Column measurements: [<mark>A to K</mark>] All the baseline and threshold species				Continue the current state of practice in vertical; add temporal resolution.
of emissions of gases and	of the domain; and AOD, AAOD, AI, aerosol optical centroid height (AOCH), hourly for SZA<70 and 8 km x 8 km product horizontal spatial resolution at the	Cloud Camera resolution, two s	pectral k	oands, bas		Improve retrieval accuracy, provide diagnostics for gases and aerosol
aerosols important for air quality and	center of the domain.	Vertical informa				
climate?	<u>Threshold measurements¹:</u> CO hourly day and night; O3, NO2 hourly when SZA<70; AOD hourly (SZA<50) ; at 8 km x 8 km	Two pieces of in troposphere in d sensitivity to the	aylight v	with	O3, CO (Baseline and Threshold)	Separate the lower-most troposphere from the free troposphere for O3, CO.
. How do physical, chemical, and	product horizontal spatial resolution at the center of the domain.	Altitude (+/- 1km)		AOCH (baseline only)	Detect aerosol plume height; improve retrieval accuracy.
dynamical	A. Measure the threshold or baseline species or	Product horizon	tal spatia	al resolutio	n at the center of	the domain, (nominally 100W, 35 N): A to
processes	properties with the temporal and spatial	4 km x 4 km (ba			Gases	
determine tropospheric	resolution specified (see next column) to quantify the underlying emissions, understand emission processes, and track transport and chemical	8 km x 8 km (thr 8 km x 8 km (ba		reshold)	Aerosol properties	Capture spatial/temporal variability; obt better yields of products.
composition and air quality over	evolution of air pollutants [<mark>]], 2, 3, 4, 5</mark> , 6]	16 km x 16 km (baseline	only)	Over open	Inherently larger spatial scales, sufficient
scales ranging	Measure AOD, AAOD, and NH3 to quantify aerosol and nitrogen deposition to land and				ocean	to link to LEO observations
from urban to	coastal regions [2, 4]	Spectral region				Typical use
continental,	C. Measure AOD, AAOD, and AOCH to relate	UV-VIS or UV-11 SWIR, MWIR	R O C			Provide multispectral retrieval informati in daylight
diurnally to seasonally?	surface PM concentration, UV-B level and	UV		02, HCHC		
seasonally?	visibility to aerosol column loading [<mark>1]</mark> 2, 3, 4, 5, 6	SWIR	СН	14		Retrieve gas species from their atmospheric spectral signatures (typica
How does air	Determine the instantaneous radiative forcings	TIR	NH	13		autospitene specifal signatures (typica
pollution drive climate forcing	associated with ozone and aerosols on the continental scale and relate them quantitatively	pls on the Vis AOD, NO2, CHOCHO quantitatively		носно	Obtain spectral-dependence of AOD for particle size and type information	
and how does	to natural and anthropogenic emissions [3, 5, 6]	UV-deep blue AAOD			Obtain spectral-dependence of AAOD aerosol type information	
climate change	Observe pulses of CH4 emission from biogenic and anthropogenic releases; CO anthropogenic	UV-deep blue AI		Provide absorbing aerosol information		
affect air quality	and wildfire emissions; AOD, AAOD, and AI from	Vis-NIR AOCH		Retrieve aerosol height ³		
on a continental scale?	fires; AOD, AAOD, and AI from dust storms; SO2 and AOD from volcanic eruptions 11, 4, 6	Atmospheric m	easuren	nents ove	r Land/Coastal a	areas, baseline and threshold: A to K
How can	Quantify the inflows and outflows of O3, CO, SO2, and aerosols across continental boundaries	Species Time reso	lution	Typical value ²	-	Description
observations from space improve air	to determine their impacts on surface air quality and on climate [2, 3, 5]	O3 Hourly SZA<		0.0	0-2 km: 10 ppbv 2km–tropopaus 15 ppbv	
quality forecasts and assessments	G Characterize aerosol particle size and type from spectral dependence measurements of AOD and AAOD [1, 2, 3, 4, 5, 5]	Hor		5	Stratosphere: 5 0-2 km: 20ppbv	% AQ; also transport, charate forcing Track anthropogenic and biomass
for societal benefit?	Acquire measurements to improve representation of processes in air quality models			2 x10 ¹⁸	2km–tropopaus 20 ppbv	sensitivity to the lowest 2 km a daylig
. How does intercontinental	and improve data assimilation in forecast and assessment models [4]	AOD	10	0.1 – 1	0.05	Observe total aerosol; aerosol burce and transport; climate forcing Distinguish background from entrince
transport affect air	Synthesize the GEO-CAPE measurements with information from in-situ and ground-based			6 x10 ¹⁵	1×10 ¹⁵	polluted scenes; atmospheric che nis
quality?	remote sensing networks to construct an enhanced observing system [<mark>1]</mark> , 2, 3, 4, 5, 6]	Additic atmo	ospherio	e measure	ments over Lan	d/Coastal areas, baseline only: 🗚 t 🛛
How do opicadia	Leverage GEO-CAPE observations into an	Specie.		Typi valu	cal Precision	² Description
How do episodic events, such as wild fires, dust	integrated observing system including geostationary satellites over Europe and Asia					Observe biogenic VOC emissions expected to peak at midday; che str
outbreaks, and	together with LEO satellites and suborbital platforms for assessing the hemispheric transport	SO2* 3/d		<50 1×10) ¹⁶ 1×10 ¹⁶	Identify major pollution and volce ic emissions; atmospheric chemistry
volcanic eruptions,	[<mark>1</mark> , 2, 3, 4, 5, 6]	СН4		4 x1	0 ¹⁹ 20 ppbv	Observe anthropogenic and na ural emissions sources
affect atmospheric composition and air quality?	Integrate observations from GEO-CAPE and other platforms into models to improve representation of processes in the models and to	NH3 2/0			0.01	Observe agricultural emissions
	link the observed composition, deposition, and radiative forcing to the emissions from	сносно		2x10		Detect VOC emissions referesol formation, atmosphere chemistry
	anthropogenic and natural sources [<mark>1</mark> , <mark>2</mark> , <mark>3</mark> , 4 , 5, <mark>5</mark>]	AAC	-21	A0-0	0.05 0.02	Distinguish smoker and dust from non UV absorbing prosols; climate forcin
		1	iy, SZA	4<70 -1 -		Detector posols near/above clouds an entropy of the second
		Ho	urly, SZA	A<70 Varia		Determine plume height; large scale transport, conversions from AOD to F
			easurem		l, I, J, K] baselin	e oniy, 16 km x 16 km
		cean me	easurem	1/day	Over oper	oceans, capture long-range transport of
			easurem		Over oper pollution,	

Atmospheric measurements over Land/Coastal areas, baselin	ne and threshold: [A to K]
---	----------------------------

	Species	Time resolution	Typical value ²	Precision ²	Description
	03	Hourly, SZA<70	9 x10 ¹⁸	0-2 km: 10 ppbv 2km–tropopause: 15 ppbv Stratosphere: 5%	Observe O3 with two pieces of information in the troposphere with sensitivity to the lowest 2 km for surface AQ; also transport, climate forcing
	со	Hourly, day and night	2 x10 ¹⁸	0-2 km: 20ppbv 2km–tropopause: 20 ppbv	Track anthropogenic and biomass burning plumes; observe CO with two pieces of information in the vertical with sensitivity to the lowest 2 km in daylight
٦	AOD	Hourly, SZA<70	0.1 – 1	0.05	Observe total aerosol; aerosol sources and transport; climate forcing
;	NO2	Hourly, SZA<70	6 x10 ¹⁵	1×10 ¹⁵	Distinguish background from enhanced/ polluted scenes; atmospheric chemistry

Additional atmospheric measurements over Land/Coastal areas, baseline only: A to K

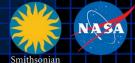
Species	Time resolution	Typical value ²	Precision ²	Description
нсно*	3/day, SZA<50	1.0x10 ¹⁶	1×10 ¹⁶	Observe biogenic VOC emissions, expected to peak at midday; chemistry
SO2*	3/day, SZA<50	1×10 ¹⁶	1×10 ¹⁶	Identify major pollution and volcanic emissions; atmospheric chemistry
CH4	2/day	4 x10 ¹⁹	20 ppbv	Observe anthropogenic and natural emissions sources
NH3	2/day	2x10 ¹⁶	0-2 km: 2ppb∨	Observe agricultural emissions
сносно*	2/day	2x10 ¹⁴	4×10 ¹⁴	Detect VOC emissions, aerosol formation, atmospheric chemistry
AAOD	Hourly, SZA<70	0 – 0.05	0.02	Distinguish smoke and dust from non- UV absorbing aerosols; climate forcing
AI	Hourly, SZA<70	-1 – +5	0.1	Detect aerosols near/above clouds and over snow/ice; aerosol events
АОСН	Hourly, SZA<70	Variable	1 km	Determine plume height; large scale transport, conversions from AOD to PM


Ultraviolet/ visible species (GOME, SCIA, OMI, OMPS, TEMPO, etc.)

Typical TEMPO-range spectra (from ESA GOME-1)

NASA

Smithsonian

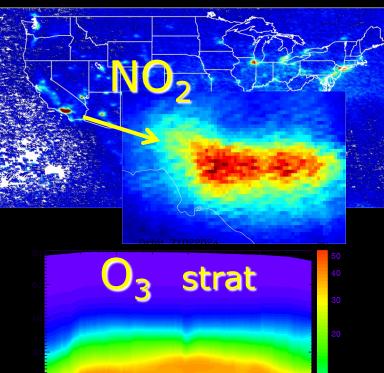

DU

Low Earth orbit:

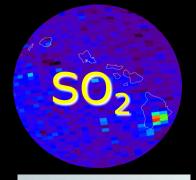
DO

Sun-synchronous nadir heritage

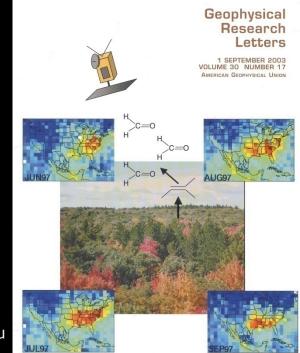
Instrument	Detectors	Spectral Coverage [nm]	Spectral Res. [nm]	Ground Pixel Size [km ²]	Global Coverage
GOME-1 (1995-2011)	Linear Arrays	240-790	0.2-0.4	40 < 3℃ (40 × 80 zoom)	3 days
SCIAMACHY (2002-2012)	Linear Arrays	240-2380	0.2-1.5	30×30/60/90 30×320/240	6 days
OMI (2004)	2-D CCD	270.810	0.42-0.63	18×24 - 42×162	daily
GOME-2a,b (2006, 2012)	Linear Phays	240-799	0.24-0.53	40 × 80 (40 × 10 zoom)	near-daily
OMPS-1 (2011)	2-D C D C	S 250-380	0.42-1.0	50 × 50	daily

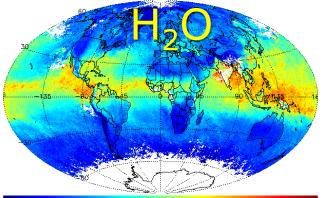

Previous experience (since 1985 at SAO and MPI) Scientific and operational measurements of pollutants O₃, NO₂, SO₂, H₂CO, C₂H₂O₂ 10/21/1@ CO, CH₄ BrO, OCIO, CIO, IO, H₂O, O₂-O₂, Raman, aerosol,)

_EO measurement capability


A full, minimally-redundant, set of polluting gases, plus aerosols and clouds is now measured to very high precision from satellites. Ultraviolet and visible spectroscopy of backscattered radiation provides O₃ (including profiles and tropospheric O₃), NO₂ (for NO_x), H_2CO and $C_2H_2O_2$ (for VOCs), SO_2 , H₂O, O₂, O₂-O₂, N₂ and O₂ Raman scattering, and halogen oxides (BrO, CIO, IO, OCIO). Satellite spectrometers we planned since 1985 began making these measurements in 1995.

Smithsonian Astrophysical Observatory GOME, SCIAMACHY, and OMI examples


trop


Kilauea activity, source of the VOG event in Honolulu on 9 November 2004

 $C_2H_2O_2$

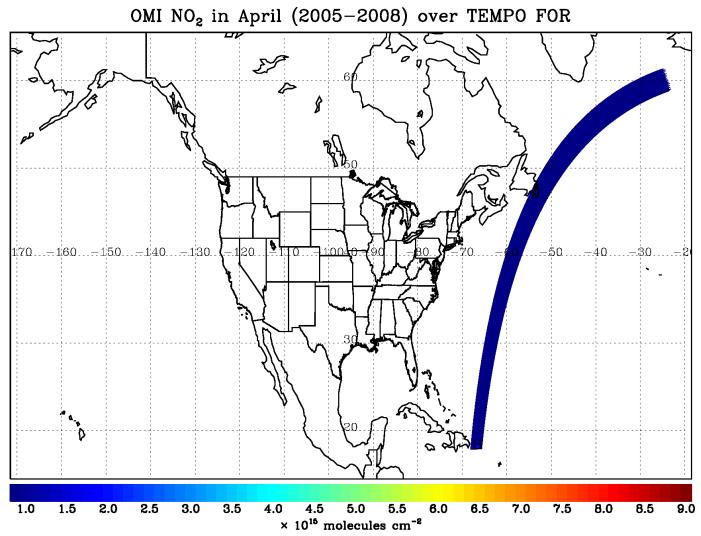
soprene estimates revising emissions models • El Niño helping to explain the effects of global warming on weather • Fluid injection inducing underground seismicity

H₂CC

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00 67.50 75.0

TEMPO

Baseline and threshold data products



Species/Products	Required Precision	Temporal Revisit
0-2 km O ₃ (Selected Scenes) Baseline only	10 ppbv	2 hour
Tropospheric O ₃	10 ppbv	1 hour
Total O ₃	3%	1 hour
Tropospheric NO ₂	1.0×10^{15} molecules cm ⁻²	1 hour
Tropospheric H ₂ CO	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric SO ₂	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric C ₂ H ₂ O ₂	4.0×10^{14} molecules cm ⁻²	3 hour
Aerosol Optical Depth	0.10	1 hour

- Minimal set of products sufficient for constraining air quality
- Across Greater North America (GNA): 18°N to 58°N near 100°W, 67°W to 125°W near 42°N
- Data products at urban-regional spatial scales
 - Baseline ≤ 60 km² at center of Field Of Regard (FOR)
 - Threshold \leq 300 km² at center of FOR
- Temporal scales to resolve diurnal changes in pollutant distributions
- Geolocation uncertainty of less than 4 km
- Mission duration, subject to instrument availability
 - Baseline 20 months
 - Threshold 12 months

TEMPO

TEMPO hourly NO₂ sweep (GEO @92.85W)

Boresight: 34N, 91W ~ 2034 good N/S pixels


NASA

- ~ 1282 scans/hr
- ~ 2.6 M pixels/hr
- Data rate: ~31.2
 Mbs (~20 times of OMI data,

comparable to TROPOMI)

Scanning partial FOV at ≤ 10 min allowed up to 25% of time TEMPO footprint (GEO @91° W)

• Boresight at 33.76°N, 92.85°W

Location	N/S (km)	E/W (km)	GSA (km²)	VZA (°)
Boresight	2.0	4.8	9.5	39.3
36.5°N, 100°W	2.1	4.8	10.1	42.4
Washington, DC	2.3	5.1	11.3	48.0
Seattle	3.2	6.2	16.8	61.7
Los Angeles	2.1	5.6	11.3	48.0
Boston	2.5	5.5	13.0	53.7
Miami	1.8	4.9	8.6	33.2
San Juan	1.7	5.6	9.2	37.4
Mexico City	1.6	4.7	7.7	23.9
Can. tar sands	4.1	5.6	20.8	67.0
Juneau	6.1	9.1	33.3	75.3

PO

NASA

Smithsonian

Los Angeles coverage

Santa Clarita Thousand Oaks Rancho Cucamonga 1 Fontar 1 Angeles Pomona Santa Monica Dume Canyon Santa Monica Canyon Corona Torrance

Santa Monica Basin

EMPO

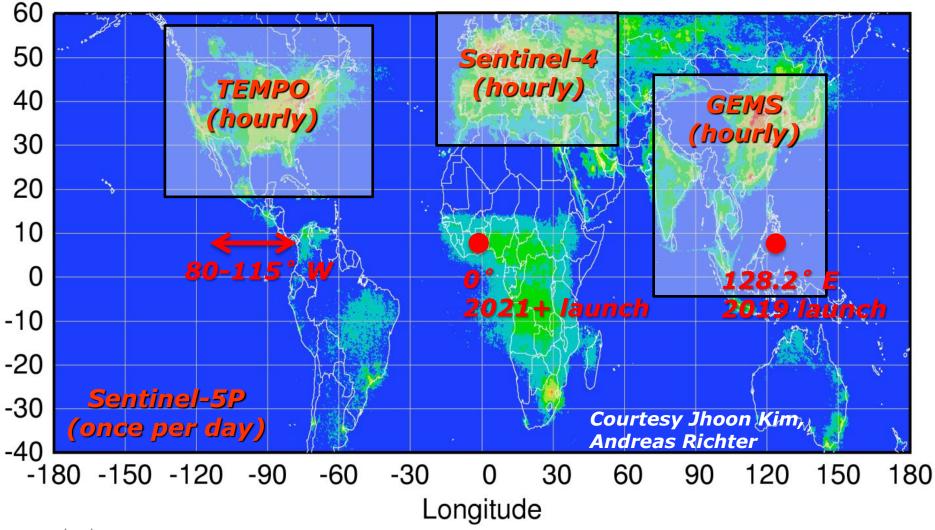
Oxnard

Mugu Canyon

OTH

Long Beach

Image Landsat © 2015 Google Anaheim


Huntington Beach

Irvine

Goodle earth

Riv

Global pollution

The TEMPO Green Paper

Smithsonian

Chemistry, physics, and meteorology experiments with the Tropospheric Emissions: Monitoring of Pollution instrument

Now at: https://www.cfa.harvard.edu/atmosphere/publications.html

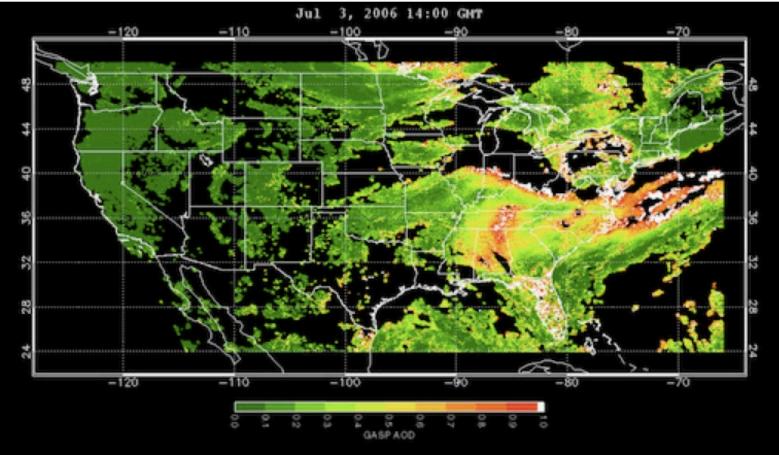
K. Chance^a, X. Liu^a, C. Chan Miller^a, G. González Abad^a, G. Huang^b, C. Nowlan^a, A. Souri^a, R. Suleiman^a, K. Sun^c, H. Wang^a, L. Zhu^a, P. Zoogman^a, J. Al-Saadi^d, J.-C. Antuña-Marrero^e, J. Carr^f, R. Chatfield^g, M. Chin^h, R. Cohenⁱ, D. Edwardsⁱ, J. Fishman^k, D. Flittner^d, J. Geddes^l, M. Grutter^m, J.R. Hermanⁿ, D.J. Jacob^o, S. Janz^h J. Joiner^h, J. Kim^p, N.A. Krotkov^h, B. Lefer^q, R.V. Martin,^{a,r,s}, O.L. Mayol-Bracero^t, A. Naeger^u, M. Newchurch^u, G.G. Pfister^j, K. Pickering^v, R.B. Pierce^w, C. Rivera Cárdenas^m, A. Saiz-Lopez^x, W. Simpson^y, E. Spinei^z, R.J.D. Spurr^a, J.J. Szykman^{bb}, O. Torres^h, J. Wang^{cc}

NORMAL TIME RESOLUTION STUDIES	Volcanoes
Air quality and health	Socio-economic studies
Ultraviolet exposure	National pollution inventories
Biomass burning	Regional and local transport of pollutants
Synergistic GOES-16/17 Products	Sea breeze studies for Florida and Cuba
Advanced aerosol products	Transboundary pollution gradients
Soil NO _x after fertilizer application and after rainfall	Transatlantic dust transport
Solar-induced fluorescence from chlorophyll	HIGH TIME RESOLUTION EXPERIMENTS
Foliage studies	Lightning NO _x
Mapping NO_2 and SO_2 dry deposition at high resolution	Morning and evening higher-frequency scans
Crop and forest damage from ground-level ozone	Dwell-time studies and temporal selection to improve detection limits
Halogen oxide studies in coastal and lake regions	Exploring the value of TEMPO in assessing pollution transport during upslope flows
Air pollution from oil and gas fields	Tidal effects on estuarine circulation and outflow plumes
Night light measurements resolving lighting type	Air quality responses to sudden changes in emissions
Ship tracks, drilling platform plumes, and other concentrated sources.	Cloud field correlation with pollution
Water yapor studies	Agricultural soil NO _x emissions and air quality 22

The TEMPO Green Paper

Smithsonian

Chemistry, physics, and meteorology experiments with the Tropospheric Emissions: Monitoring of Pollution instrument


Now at: https://www.cfa.harvard.edu/atmosphere/publications.html

K. Chance^a, X. Liu^a, C. Chan Miller^a, G. González Abad^a, G. Huang^b, C. Nowlan^a, A. Souri^a, R. Suleiman^a, K. Sun^c, H. Wang^a, L. Zhu^a, P. Zoogman^a, J. Al-Saadi^d, J.-C. Antuña-Marrero^e, J. Carr^f, R. Chatfield^g, M. Chin^h, R. Cohenⁱ, D. Edwards^j, J. Fishman^k, D. Flittner^d, J. Geddes^l, M. Grutter^m, J.R. Hermanⁿ, D.J. Jacob^o, S. Janz^h J. Joiner^h, J. Kim^p, N.A. Krotkov^h, B. Lefer^q, R.V. Martin,^{a,r,s}, O.L. Mayol-Bracero^t, A. Naeger^u, M. Newchurch^u, G.G. Pfister^j, K. Pickering^v, R.B. Pierce^w, C. Rivera Cárdenas^m, A. Saiz-Lopez^x, W. Simpson^y, E. Spinei^z, R.J.D. Spurr^a, J.J. Szykman^{bb}, O. Torres^h, J. Wang^{cc}

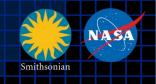
NORMAL TIME RESOLUTION STUDIES	Volcanoes
Air quality and health	Socio-economic studies
Ultraviolet exposure	National pollution inventories
Biomass burning	Regional and local transport of pollutants
Synergistic GOES-16/17 Products	Sea breeze studies for Florida and Cuba
Advanced aerosol products	Transboundary pollution gradients
Soil NO _x after fertilizer application and after rainfall	Transatlantic dust transport
Solar-induced fluorescence from chlorophyll	HIGH TIME RESOLUTION EXPERIMENTS
Foliage studies	Lightning NO _x
Mapping NO_2 and SO_2 dry deposition at high resolution	Morning and evening higher-frequency scans
Crop and forest damage from ground-level ozone	Dwell-time studies and temporal selection to improve detection limits
Halogen oxide studies in coastal and lake regions	Exploring the value of TEMPO in assessing pollution transport during upslope flows
Air pollution from oil and gas fields	Tidal effects on estuarine circulation and outflow plumes
Night light measurements resolving lighting type	Air quality responses to sudden changes in emissions
Ship tracks, drilling platform plumes, and other concentrated sources.	Cloud field correlation with pollution
Water yagor studies	Agricultural soil NO _x emissions and air quality 23

www.epa.gov/rsig

TEMPO will use the EPA's Remote Sensing Information Gateway (RSIG) for subsetting, visualization, and product distribution – to make TEMPO YOUR instrument

NASA

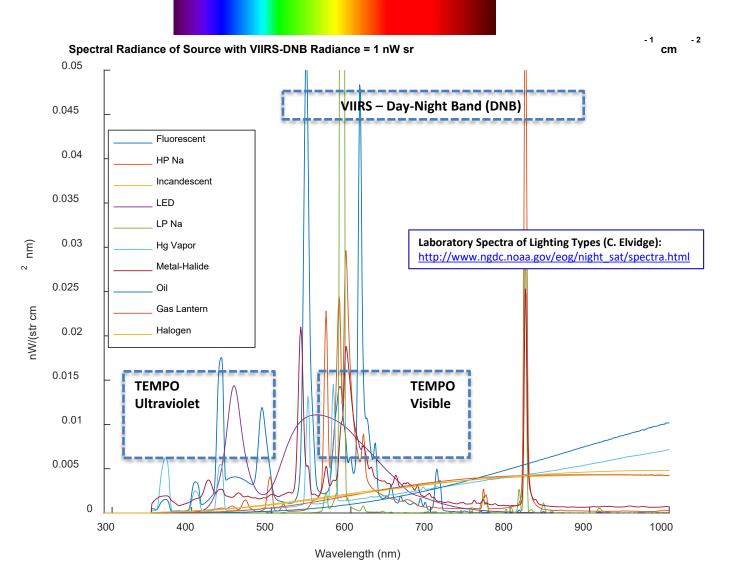
Air quality and health in the sector of the


TEMPO's hourly measurements allow better understanding of the complex chemistry and dynamics that drive air quality on short timescales. The density of TEMPO data is ideally suited for data assimilation into chemical models for both air quality forecasting and for better constraints on emissions that lead to air quality exceedances. Planning is underway to combine TEMPO with regional air quality models to improve EPA air quality indices and to directly supply the public with near real time pollution reports and forecasts through website and mobile applications. As a case study, an OSSE for the Intermountain West was performed to explore the potential of geostationary ozone measurements from TEMPO to improve monitoring of ozone exceedances and the role of background ozone in causing these exceedances (Zoogman et al. 2014).

The TEMPO Green Paper living document is at http://tempo.si.edu/publications. Please feel free to contribute

DO

- 1. Up to 25% of observing time can be devoted to non-standard operations: Time resolution higher, E/W spatial coverage less
- 2. Two types of studies under regular or non-standard operations
 - 1. Events (e.g., eruptions, fires, dust storms, etc.)
 - 2. Experiments (*e.g.*, agriculture, forestry, NO_x,)
- 3. TEMPO team will work with experimenters concerning Image Navigation and Registration (*i.e.*, pointing resolution and accuracy)
- 4. Experiments could occur during commissioning phase
- 5. Hope to include SO₂, aerosol, H₂O, and C₂H₂O₂ as operational products
- 6. Can initiate a non-standard, pre-loaded scan pattern within several hours
- 7. Send your ideas into a TEMPO team member

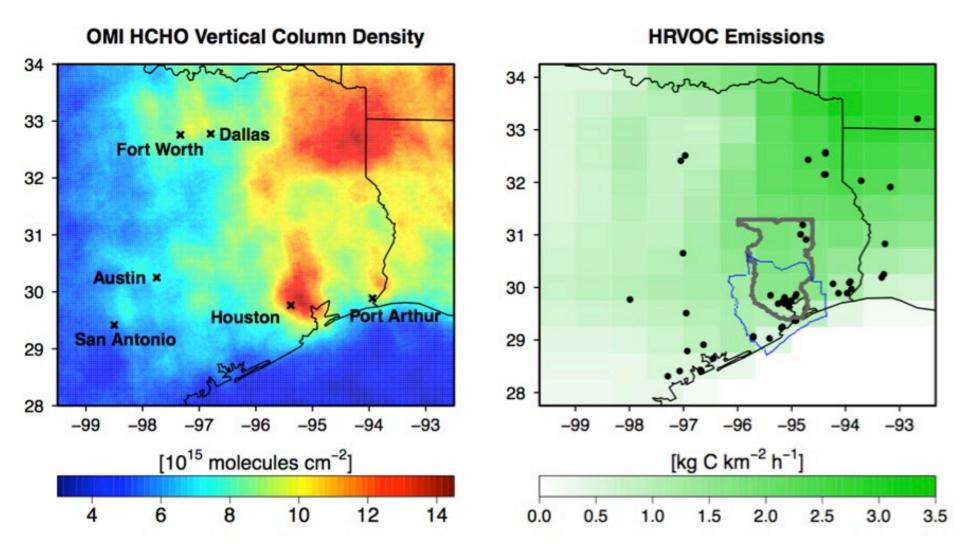

Traffic, biomass burning

Morning and evening higher-frequency scans The optimized data collection scan pattern during mornings and evenings provides multiple advantages for addressing TEMPO science questions. The increased frequency of scans coincides with peaks in vehicle miles traveled on each coast.

Biomass burning The unexplained variability in ozone production from fires is of particular interest. The suite of NO_2 , H_2CO , $C_2H_2O_2$, H_2O , O_3 , and aerosol measurements from TEMPO is well suited to investigating how the chemical processing of primary fire emissions effects the secondary formation of VOCs and ozone. For particularly important fires it is possible to command special TEMPO observations at even shorter than hourly revisit time, as short as 10 minutes.

City lights spectroscopic signatures

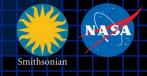



 \mathbf{PO}

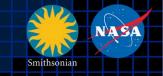
NASA

Smithsonian

Oversampling Lei Zhu *et al*., 2014


10/21/19

PO



PO

NO_x studies

Lightning NO, Interpretation of satellite measurements of tropospheric NO₂ and O_3 , and upper tropospheric HNO₃ lead to an overall estimate of 6 ± 2 Tg N y-1 from lightning [Martin et al., 2007]. TEMPO measurements, including tropospheric NO₂ and O₃, can be made for time periods and longitudinal bands selected to coincide with large thunderstorm activity, including outflow regions, with fairly short notice.

Soil NO, Jaeglé et al. [2005] estimate 2.5 - 4.5 TgN y⁻¹ are emitted globally from nitrogen-fertilized soils, still highly uncertain. The US a posteriori estimate for 2000 is 0.86 \pm 1.7 TgN y⁻¹. For Central America it is 1.5 \pm 1.6 TgN y⁻¹. They note an underestimate of NO release by nitrogen-fertilized croplands as well as an underestimate of rain-induced emissions from semiarid soils.

TEMPO is able to follow the temporal evolution of emissions from croplands after fertilizer application and from rain-induced emissions from semi-arid soils. Higher than hourly time resolution over selected regions may be accomplished by special observations. Improved constraints on soil NO_{x} emissions may also improve estimated of lightning NO_x emissions [Martin *et al.*] 2000].

DO Spectral indicators

Fluorescence and other spectral indicators Solar-induced fluorescence (SIF) from chlorophyll over both land and ocean will be measured. In terrestrial vegetation, chlorophyll fluorescence is emitted at red to far-red wavelengths (~650-800 nm) with two broad peaks near 685 and 740 nm, known as the red and far-red emission features. Oceanic SIF is emitted exclusively in the red feature. SIF measurements have been used for studies of tropical dynamics, primary productivity, the length of carbon uptake period, and drought responses, while ocean measurements have been used to detect red tides and to conduct studies on the physiology, phenology, and productivity of phytoplankton. TEMPO can retrieve both red and far-red SIF by utilizing the property that SIF fills in solar Fraunhofer and atmospheric absorption lines in backscattered spectra normalized by a reference (e.g., the solar spectrum) that does not contain SIF.

TEMPO will also be capable of measuring **spectral indices developed for estimating foliage pigment contents and concentrations**. Spectral approaches for estimating pigment contents apply generally to leaves and not the full canopy. A single spectrally invariant parameter, the Directional Area Scattering Factor (DASF), relates canopy-measured spectral indices to pigment concentrations at the leaf scale.

UVB TEMPO measurements of daily UV exposures build upon heritage from OMI and TROPOMI measurements. Hourly cloud measurements from TEMPO allow taking into account diurnal cloud variability, which has not been previously possible. The OMI UV algorithm is based on the TOMS UV algorithm. The specific product is the downward spectral irradiance at the ground (in W m⁻² nm⁻ ¹) and the erythemally weighted irradiance (in W m^{-2}). 10/21/19 33

Aerosols and clouds

Aerosols TEMPO's launch algorithm for retrieving aerosols will be based upon the OMI aerosol algorithm that uses the sensitivity of near-UV observations to particle absorption to retrieve absorbing aerosol index (AAI), aerosol optical depth (AOD) and single scattering albedo (SSA). TEMPO will derive its pointing from one of the GOES-16 or GOES-17 satellites and is thus automatically co-registered. TEMPO may be used together with the advanced baseline imager (ABI) instrument, particularly the 1.37µm bands, for aerosol retrievals, reducing AOD and fine mode AOD uncertainties from 30% to 10% and from 40% to 20%.

Clouds The launch cloud algorithm is be based on the rotational Raman scattering (RRS) cloud algorithm that was developed for OMI by NASA GSFC. Retrieved cloud pressures from OMCLDRR are not at the geometrical center of the cloud, but rather at the optical centroid pressure (OCP) of the cloud. **Additional** cloud products are possible using the O_2 - O_2 collision complex and/or the $O_2 B$ band. 34

PN

Halogens

BrO will be produced at launch, assuming stratospheric AMFs. Scientific studies will correct retrievals for tropospheric content. IO was first measured from space by SAO using SCIAMACHY spectra [Saiz-Lopez et al., 2007]. It will be produced as a scientific product, particularly for coastal studies, assuming AMFs appropriate to lower tropospheric loading.

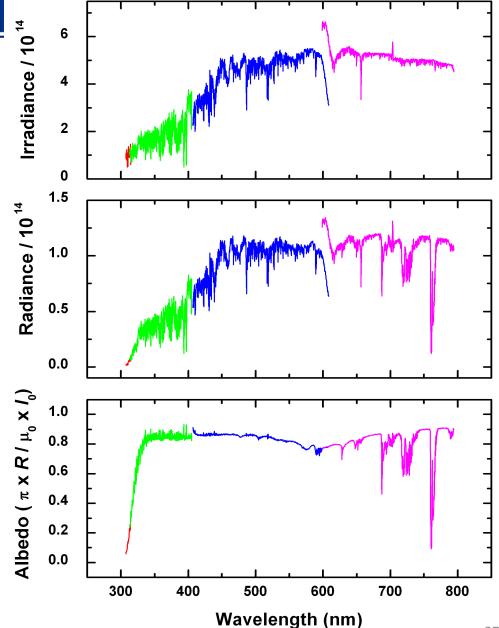
The atmospheric chemistry of halogen oxides over the ocean, and in particular in coastal regions, can play important roles in ozone destruction, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei [Saiz-Lopez and von Glasow, 2012]. The budgets and distribution of reactive halogens along the coastal areas of North America are poorly known. Therefore, providing a measure of the budgets and diurnal evolution of coastal halogen oxides is necessary to understand their role in atmospheric photochemistry of coastal regions. Previous ground-based observations have shown enhanced levels (at a few pptv) of halogen oxides over coastal locations with respect to their background concentrations over the remote marine boundary layer [Simpson et al., 2015]. Previous global satellite instruments lacked the sensitivity and spatial resolution to detect the presence of active halogen chemistry over mid-latitude coastal areas. TEMPO observations together with atmospheric models will allow examination of the processes linking ocean halogen emissions and their potential impact on the oxidizing capacity of coastal environments of North America.

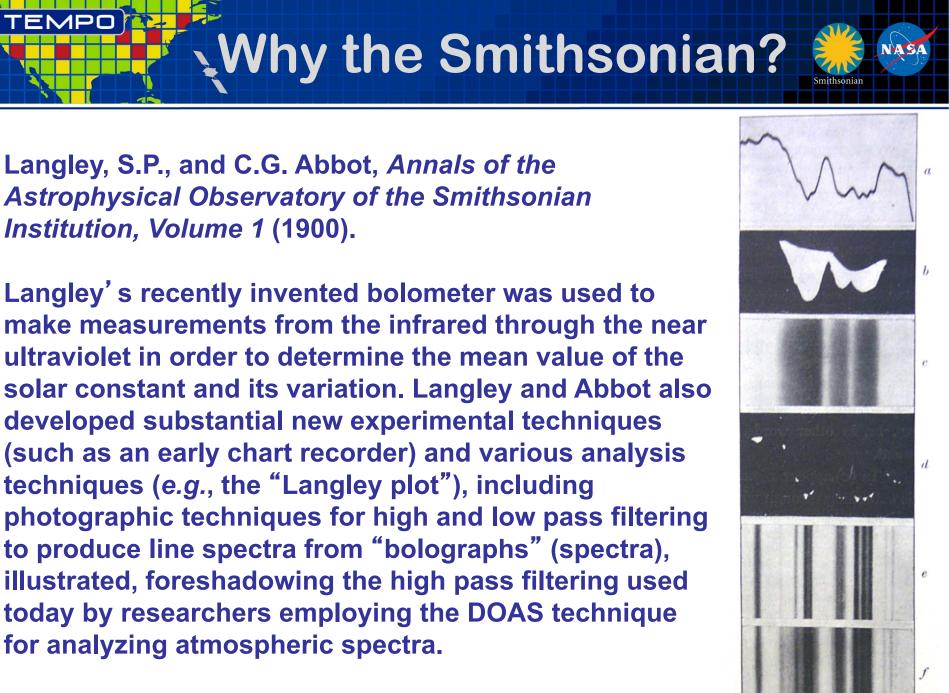
TEMPO also performs hourly measurements one of the world's largest salt lakes: the Great Salt Lake in Utah. Measurements over Salt Lake City show the highest concentrations of BrO over the globe. Hourly measurement at a high spatial resolution can improve understanding of BrO production in salt lakes. 35

TEMPO mission concept

Geostationary orbit, operating on a commercial telecom satellite

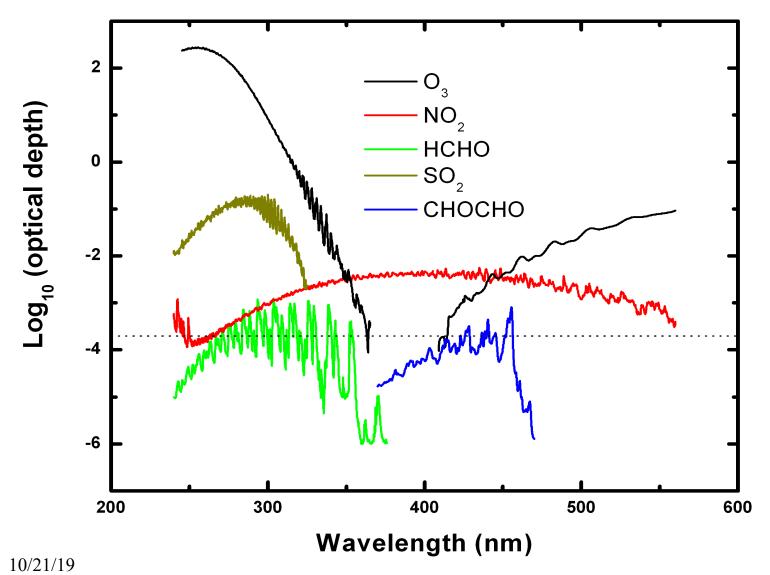
- NASA will arrange launch and hosting services (per Earth Venture Instrument scope)
 - 80-115° W acceptable latitude
 - Specifying satellite environment, accommodation
- Hourly measurement and telemetry duty cycle for at least ≤70° SZA


TEMPO is low risk with significant space heritage


- We proposed SCIAMACHY in 1985, as suggested by the late Dr. Dieter Perner
- All proposed TEMPO measurements except eXceL O₃ have been made from low Earth orbit satellite instruments to the required precisions by SAO and Science Team members
- All TEMPO launch algorithms are implementations of currently operational algorithms
 - NASA TOMS-type O₃
 - SO₂, NO₂, H₂CO, C₂H₂O₂ from fitting with AMF-weighted cross sections
 - Absorbing Aerosol Index, UV aerosol, Rotational Raman scattering cloud
 - SAO eXceL profile/tropospheric/PBL O₃ for selected geographic targets
- Example higher-level products: Near-real-time pollution/AQ indices, UV index
- TEMPO research products will greatly extend science and applications
 - Example research products: BrO and IO from AMF-normalized cross sections; heightresolved SO₂; additional cloud/aerosol products; vegetation products; additional gases; city lights

What do we measure?

GOME irradiance, radiance, and reflectance spectrum for high-albedo (fully cloudy) ground pixel



10/21/19

E

39

TEMPO

Mayagüez

10/21/19

Puerto Rico coverage

O Vega Baja San Juan

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus © 2018 Google Data LDEO-Columbia, NSF, NOAA

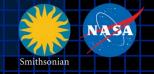
Arecibo

once

16.31 mi

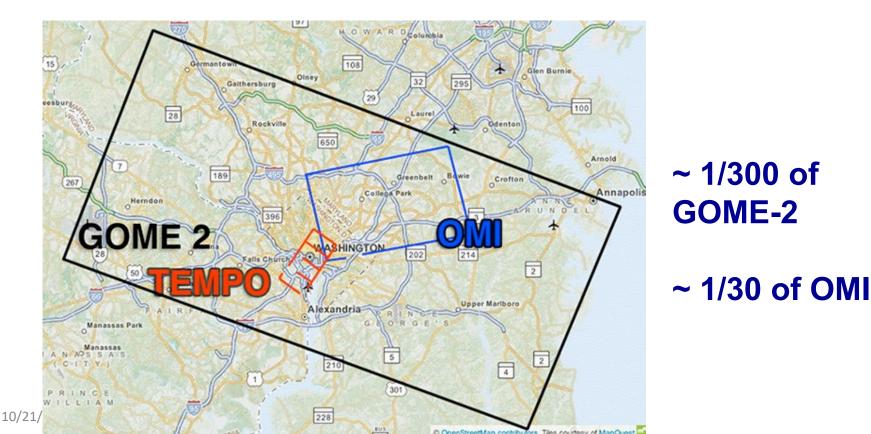
• Patillas

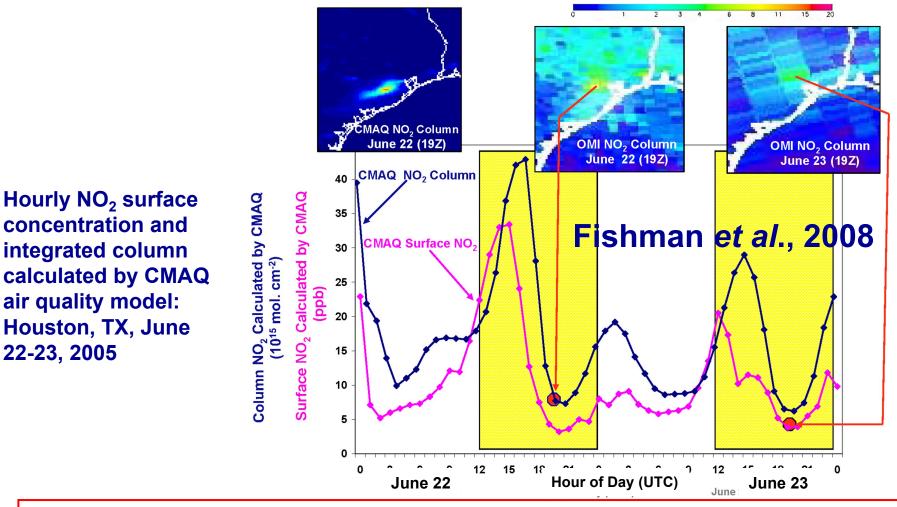
Carolina


Caguas

Google Earth

NASA


Smithsonian

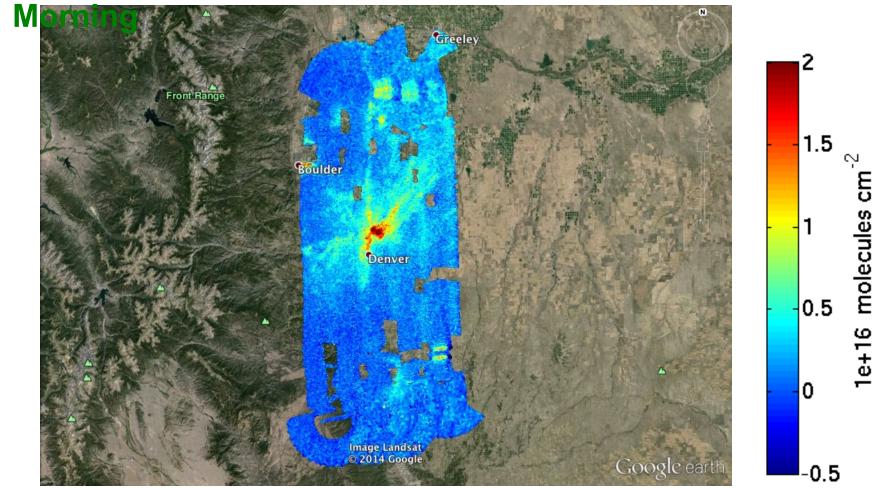

41

- Spatial resolution: allows tracking pollution at sub-urban scale
 - GEO at 100°W: 2.1 km N/S × 4.7 km E/W = 9.8 km² (native) at center of FOR (36.5°N, 100°W)
 - Full resolution for NO₂, HCHO, total O₃ products
 - Co-add 4 N/S pixels for O₃ profile product: 8.4 km N/S × 4.7 km E/W

Why geostationary? High temporal and spatial resolution

Column NO₂ (10¹⁵ mol. cm⁻²)

LEO observations provide limited information on rapidly varying emissions, chemistry, & transport


GEO will provide observations at temporal and spatial scales highly relevant to air quality processes

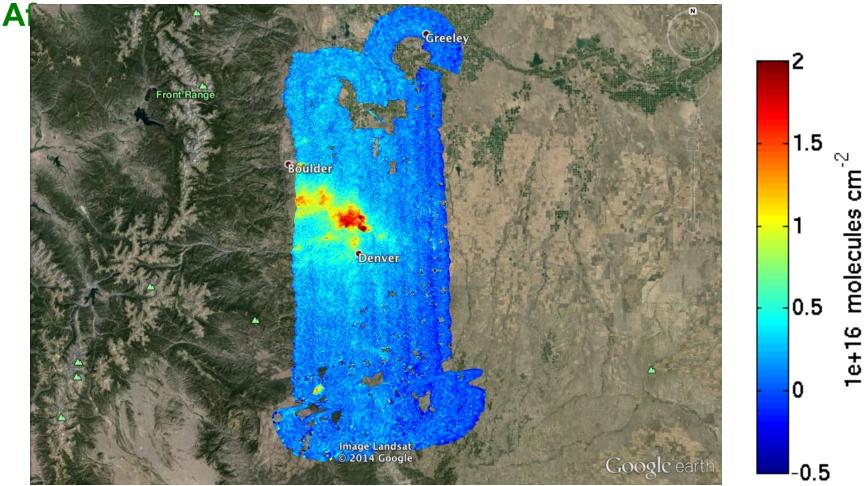
NASA

Smithsonian

TEMPO TEMPO measurements will capture the diurnal cycle of pollutant emissions

GeoTASO NO₂ Slant Column, 02 August 2014

Co-added to approx. $500m_{10/21/19}$ x 450m


Morning vs. Afternoon

Preliminary data, C. Nowlan, SAO

NASA

TEMPO TEMPO measurements will capture the diurnal cycle of pollutant emissions

GeoTASO NO₂ Slant Column, 02 August 2014

Co-added to approx. $500m_{10/21/19} \times 450m$

Morning vs. Afternoon

Preliminary data, C. Nowlan, SAO⁴⁴

NASA