Application of OMI NO_2 retrievals to the evaluation of NO_x emissions from on-road mobile sources in the Great Lakes Region

Georgia Tech

Momei Qin^{1,*}, Yongtao Hu¹, M. Talat Odman¹ and Armistead G. Russell¹

1. Georgia Institute of Technology * Now at U.S. Environmental Protection Agency

Background

- o A reliable NO_x (NO+NO₂) emission inventory is very important
- NO₂ is a criteria air pollutant
- > NO_x participate in the formation of O₃ and particulate matter
- Possible overestimates of NO_x emissions in the 2011 US National Emission Inventory (NEI), likely associated with mobile sources (~30%) (Travis et al., 2016; Souri et al., 2016; McDonald et al., 2018)
- 50% reduction of NO_x emissions from on-road mobile sources in the 2011 NEI led to better agreement of the CMAQ simulation with ground-based measurements of NO_x and O₃ in the Great Lakes Region (Qin et al., 2018)

Methodology

Model-satellite comparison

CMAQv5.1

- One-way nested: 12 km/4 km (Fig. 1)
- Period of interest: July 2011
 2011 NEI with in-line calculations for BEIS and point
- sources
- CB05e51Two runs
- Base case
- 50% of NO_x emissions from mobile sources
- NO₂ vertical columns calculated using the 4-km simulation between 13:00 and 16:00 EST

Fig.1 Modeling domai

OMI Level 2 NO₂ data product (OMNO2) version 3.0

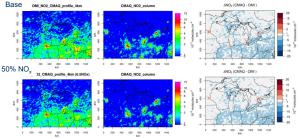
- Resolution: 13km×26km to 40km×250km
- Pass-over time: approximately 13:45 Local Time
- Global coverage every other day
 Vertical column densities (VCDs)
- derived using tropospheric NO₂ slant column densities (SCDs) from OMNO2 and air mass factors (AMFs):

$$AMF = \frac{SCD}{VCD}$$

where AMFs depends on the position of the Sun (Solar Zenith Angle), the viewing angle of OMI, vertical distribution of NO₂, surface albedo, etc.

 NO₂ vertical profiles in CMAQ (instead of GMI for the operational retrieval) used in the calculation of AMFs (Goldberg et al., 2017)

Source apportionment of NO_x using Decoupled Direct Method (DDM)


 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \begin{tabular}{ll} \hline \end{tabular} \\ \hline$

$$C_{(1+\Delta\epsilon)E_0} = C_{E_0} + \frac{1}{1!} \Delta\epsilon E_0 \, \frac{\partial C}{\partial E}|_{E=E_0} = C_{E_0} + \Delta\epsilon S^{(1)}$$

- Onroad, ptegu, nonroad, ptnonipm (point sources not included in EGU or oil/gas), c1c2 rail (C1 and C2 commercial marine emissions plus railroad emissions) and beis (> 80% of NO_v emission)
- o Convert to contributions to NO_v columns

Results and discussions

Tropospheric NO2 Columns in CMAQ vs. OMI

Fig. 2 Tropospheric NO $_2$ columns derived from OMI retrievals (left) and CMAQ simulations (middle), and differences between OMI and CMAQ (right). (Top: base simulation; Bottom: 50% reduction in NO $_x$ emissions from mobile sources in the US)

Table 1 Overall evaluation of CMAQ simulations compared to OMI retrievals

	Case	N	Mean Bias (10 ¹⁵)	Mean Error (10 ¹⁵)	Fractional Bias (%)	Fractional Error (%)	r ²
	Base	104829	-0.69	0.83	-65%	76%	0.41
	50% NO _x	104829	-0.68	0.78	-68%	77%	0.39

Base simulation

- Rural: CMAQ < OMI (sensitive to upper tropospheric NO_x) (Napelenok et al., 2008; Goldberg et al., 2017)
- Urban: CMAQ > OMI (likely due to overestimation of anthropogenic NO_x emissions)
- Overall: CMAQ < OMI (Table 1)

50% NOx emission reduction (US mobile)

- Reduced model-satellite differences in urban areas i.e., Chicago, Detroit
- No significant changes in evaluation statistics (MB, ME, FB, FE and r²) compared to the base case

Base 50% NOx

Results and discussions

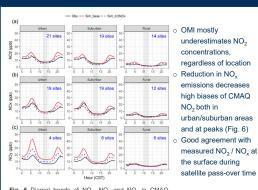


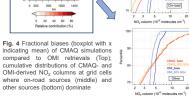
Fig. 6 Diurnal trends of NO₂, NO_x and NO_y in CMAQ simulations compared to ground-based measurements at the AQS sites. Shaded area indicates OMI pass-over time

Conclusions

- CMAQ shows low biases in NO₂ columns / surface concentrations against OMI retrievals / ground-based measurements in rural areas, with high biases in urban areas (not in all locations)
- Decreased emissions from on-road mobile sources in CMAQ reduce differences of CMAQ simulations with OMI retrievals & ground-based measurements at the high end of NO₂ columns / concentrations in urban areas
- Overestimation of NO₂ columns in CMAQ relative to OMI occurs in locations where other sources (e.g., EGU) dominate as well, which needs further investigation

Acknowledgements

This research was funded by the Electric Power Research Institute grant number 10005953 and the National Aeronautics and Space Administration (NASA) Applied Sciences Program grant number NNX16AQ29G.


References

Goldberg et al., (2017). Doi: https://doi.org/10.5194/acp-17-11403-2017 McDonald et al., (2018). Doi: https://doi.org/10.1021/acs.set.8b00778 Napelenok et al., (2008). Doi: https://doi.org/10.5194/acp-16-13561-2016 Doi: https://doi.org/10.5194/acp-16-13561-2016 Travis et al., (2016). Doi: https://doi.org/10.5194/acp-16-13561-2016

$\underline{\text{Model-satellite Gap}} \; \longleftarrow ? \longrightarrow \; \underline{\text{On-road Emissions}}$

- CMAQ simulates higher NO₂ columns above the 90th (85th) percentile in the base case than OMI retrievals at grid cells where on-road (other) sources dominate (Fig. 4)
- Reduction in on-road NO_x emissions leads to better agreement between CMAQ and OMI at the high end of NO₂ columns (>5×10¹⁵ molecules/cm²) in locations where onroad sources dominate, while the improvement is not seen at other grid cells

Focus on grid cells where:

Compared to Ground-based Measurements

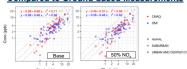


Fig. 5 Comparison of NO₂ surface concentrations derived using CMAQ and OMI with groundbased measurements at the AQS sites. NO₂ columns from OMI are converted to concentrations with any the concentration-to-column ratios in CMAO Significant underestimation of NO₂ surface concentrations at the low end in the CMAQ base case; mostly occurs in rural areas, with overestimation at urban & suburban sites at times (Fig. 5)